Metamath Proof Explorer


Theorem evensumodd

Description: If every term in a sum with an even number of terms is odd, then the sum is even. (Contributed by AV, 14-Aug-2021)

Ref Expression
Hypotheses evensumodd.a φAFin
evensumodd.b φkAB
evensumodd.o φkA¬2B
evensumodd.e φ2A
Assertion evensumodd φ2kAB

Proof

Step Hyp Ref Expression
1 evensumodd.a φAFin
2 evensumodd.b φkAB
3 evensumodd.o φkA¬2B
4 evensumodd.e φ2A
5 1 2 3 sumodd φ2A2kAB
6 4 5 mpbid φ2kAB