Metamath Proof Explorer


Theorem ex-gcd

Description: Example for df-gcd . (Contributed by AV, 5-Sep-2021)

Ref Expression
Assertion ex-gcd -6gcd9=3

Proof

Step Hyp Ref Expression
1 6nn 6
2 1 nnzi 6
3 9nn 9
4 3 nnzi 9
5 neggcd 69-6gcd9=6gcd9
6 2 4 5 mp2an -6gcd9=6gcd9
7 6cn 6
8 3cn 3
9 6p3e9 6+3=9
10 7 8 9 addcomli 3+6=9
11 10 eqcomi 9=3+6
12 11 oveq2i 6gcd9=6gcd3+6
13 3z 3
14 gcdcom 636gcd3=3gcd6
15 2 13 14 mp2an 6gcd3=3gcd6
16 3p3e6 3+3=6
17 16 eqcomi 6=3+3
18 17 oveq2i 3gcd6=3gcd3+3
19 15 18 eqtri 6gcd3=3gcd3+3
20 gcdadd 636gcd3=6gcd3+6
21 2 13 20 mp2an 6gcd3=6gcd3+6
22 gcdid 33gcd3=3
23 13 22 ax-mp 3gcd3=3
24 gcdadd 333gcd3=3gcd3+3
25 13 13 24 mp2an 3gcd3=3gcd3+3
26 3re 3
27 0re 0
28 3pos 0<3
29 27 26 28 ltleii 03
30 absid 3033=3
31 26 29 30 mp2an 3=3
32 23 25 31 3eqtr3i 3gcd3+3=3
33 19 21 32 3eqtr3i 6gcd3+6=3
34 12 33 eqtri 6gcd9=3
35 6 34 eqtri -6gcd9=3