Metamath Proof Explorer


Theorem ex-in

Description: Example for df-in . Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015)

Ref Expression
Assertion ex-in 1318=1

Proof

Step Hyp Ref Expression
1 df-pr 18=18
2 1 ineq2i 1318=1318
3 indi 1318=131138
4 snsspr1 113
5 sseqin2 113131=1
6 4 5 mpbi 131=1
7 1re 1
8 1lt8 1<8
9 7 8 gtneii 81
10 3re 3
11 3lt8 3<8
12 10 11 gtneii 83
13 9 12 nelpri ¬813
14 disjsn 138=¬813
15 13 14 mpbir 138=
16 6 15 uneq12i 131138=1
17 un0 1=1
18 16 17 eqtri 131138=1
19 3 18 eqtri 1318=1
20 2 19 eqtri 1318=1