Metamath Proof Explorer


Theorem ex-prmo

Description: Example for df-prmo : ( #p1 0 ) = 2 x. 3 x. 5 x. 7 . (Contributed by AV, 6-Sep-2021)

Ref Expression
Assertion ex-prmo #p10=210

Proof

Step Hyp Ref Expression
1 10nn 10
2 prmonn2 10#p10=if10#p10110#p101
3 1 2 ax-mp #p10=if10#p10110#p101
4 10nprm ¬10
5 4 iffalsei if10#p10110#p101=#p101
6 3 5 eqtri #p10=#p101
7 10m1e9 101=9
8 7 fveq2i #p101=#p9
9 9nn 9
10 prmonn2 9#p9=if9#p919#p91
11 9 10 ax-mp #p9=if9#p919#p91
12 9nprm ¬9
13 12 iffalsei if9#p919#p91=#p91
14 11 13 eqtri #p9=#p91
15 9m1e8 91=8
16 15 fveq2i #p91=#p8
17 8nn 8
18 prmonn2 8#p8=if8#p818#p81
19 17 18 ax-mp #p8=if8#p818#p81
20 8nprm ¬8
21 20 iffalsei if8#p818#p81=#p81
22 19 21 eqtri #p8=#p81
23 8m1e7 81=7
24 23 fveq2i #p81=#p7
25 7nn 7
26 prmonn2 7#p7=if7#p717#p71
27 25 26 ax-mp #p7=if7#p717#p71
28 7prm 7
29 28 iftruei if7#p717#p71=#p717
30 7nn0 70
31 3nn0 30
32 0nn0 00
33 7m1e6 71=6
34 33 fveq2i #p71=#p6
35 prmo6 #p6=30
36 34 35 eqtri #p71=30
37 7cn 7
38 3cn 3
39 7t3e21 73=21
40 37 38 39 mulcomli 37=21
41 37 mul02i 07=0
42 30 31 32 36 40 41 decmul1 #p717=210
43 27 29 42 3eqtri #p7=210
44 22 24 43 3eqtri #p8=210
45 14 16 44 3eqtri #p9=210
46 6 8 45 3eqtri #p10=210