Metamath Proof Explorer


Theorem exdifsn

Description: There exists an element in a class excluding a singleton if and only if there exists an element in the original class not equal to the singleton element. (Contributed by BTernaryTau, 15-Sep-2023)

Ref Expression
Assertion exdifsn x x A B x A x B

Proof

Step Hyp Ref Expression
1 eldifsn x A B x A x B
2 1 exbii x x A B x x A x B
3 df-rex x A x B x x A x B
4 2 3 bitr4i x x A B x A x B