Metamath Proof Explorer


Theorem expanduniss

Description: Expand U. A C_ B to primitives. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Assertion expanduniss ABxxAyyxyB

Proof

Step Hyp Ref Expression
1 unissb ABxAxB
2 dfss2 xByyxyB
3 2 expandral xAxBxxAyyxyB
4 1 3 bitri ABxxAyyxyB