Metamath Proof Explorer


Theorem expeq0

Description: A positive integer power is zero if and only if its base is zero. (Contributed by NM, 23-Feb-2005)

Ref Expression
Assertion expeq0 ANAN=0A=0

Proof

Step Hyp Ref Expression
1 oveq2 j=1Aj=A1
2 1 eqeq1d j=1Aj=0A1=0
3 2 bibi1d j=1Aj=0A=0A1=0A=0
4 3 imbi2d j=1AAj=0A=0AA1=0A=0
5 oveq2 j=kAj=Ak
6 5 eqeq1d j=kAj=0Ak=0
7 6 bibi1d j=kAj=0A=0Ak=0A=0
8 7 imbi2d j=kAAj=0A=0AAk=0A=0
9 oveq2 j=k+1Aj=Ak+1
10 9 eqeq1d j=k+1Aj=0Ak+1=0
11 10 bibi1d j=k+1Aj=0A=0Ak+1=0A=0
12 11 imbi2d j=k+1AAj=0A=0AAk+1=0A=0
13 oveq2 j=NAj=AN
14 13 eqeq1d j=NAj=0AN=0
15 14 bibi1d j=NAj=0A=0AN=0A=0
16 15 imbi2d j=NAAj=0A=0AAN=0A=0
17 exp1 AA1=A
18 17 eqeq1d AA1=0A=0
19 nnnn0 kk0
20 expp1 Ak0Ak+1=AkA
21 20 eqeq1d Ak0Ak+1=0AkA=0
22 expcl Ak0Ak
23 simpl Ak0A
24 22 23 mul0ord Ak0AkA=0Ak=0A=0
25 21 24 bitrd Ak0Ak+1=0Ak=0A=0
26 19 25 sylan2 AkAk+1=0Ak=0A=0
27 biimp Ak=0A=0Ak=0A=0
28 idd Ak=0A=0A=0A=0
29 27 28 jaod Ak=0A=0Ak=0A=0A=0
30 olc A=0Ak=0A=0
31 29 30 impbid1 Ak=0A=0Ak=0A=0A=0
32 26 31 sylan9bb AkAk=0A=0Ak+1=0A=0
33 32 exp31 AkAk=0A=0Ak+1=0A=0
34 33 com12 kAAk=0A=0Ak+1=0A=0
35 34 a2d kAAk=0A=0AAk+1=0A=0
36 4 8 12 16 18 35 nnind NAAN=0A=0
37 36 impcom ANAN=0A=0