Metamath Proof Explorer


Theorem expnngt1b

Description: An integer power with an integer base greater than 1 is greater than 1 iff the exponent is positive. (Contributed by AV, 28-Dec-2022)

Ref Expression
Assertion expnngt1b A2B1<ABB

Proof

Step Hyp Ref Expression
1 eluz2nn A2A
2 1 adantr A2BA
3 2 adantr A2B1<ABA
4 simplr A2B1<ABB
5 simpr A2B1<AB1<AB
6 expnngt1 AB1<ABB
7 3 4 5 6 syl3anc A2B1<ABB
8 2 nnred A2BA
9 8 adantr A2BBA
10 simpr A2BBB
11 eluz2gt1 A21<A
12 11 adantr A2B1<A
13 12 adantr A2BB1<A
14 expgt1 AB1<A1<AB
15 9 10 13 14 syl3anc A2BB1<AB
16 7 15 impbida A2B1<ABB