Metamath Proof Explorer


Theorem f13idfv

Description: A one-to-one function with the domain { 0, 1 ,2 } in terms of function values. (Contributed by Alexander van der Vekens, 26-Jan-2018)

Ref Expression
Hypothesis f13idfv.a A=02
Assertion f13idfv F:A1-1BF:ABF0F1F0F2F1F2

Proof

Step Hyp Ref Expression
1 f13idfv.a A=02
2 0z 0
3 1z 1
4 2z 2
5 2 3 4 3pm3.2i 012
6 0ne1 01
7 0ne2 02
8 1ne2 12
9 6 7 8 3pm3.2i 010212
10 fz0tp 02=012
11 1 10 eqtri A=012
12 11 f13dfv 012010212F:A1-1BF:ABF0F1F0F2F1F2
13 5 9 12 mp2an F:A1-1BF:ABF0F1F0F2F1F2