Metamath Proof Explorer


Theorem f1imaeq

Description: Taking images under a one-to-one function preserves equality. (Contributed by Stefan O'Rear, 30-Oct-2014)

Ref Expression
Assertion f1imaeq F:A1-1BCADAFC=FDC=D

Proof

Step Hyp Ref Expression
1 f1imass F:A1-1BCADAFCFDCD
2 f1imass F:A1-1BDACAFDFCDC
3 2 ancom2s F:A1-1BCADAFDFCDC
4 1 3 anbi12d F:A1-1BCADAFCFDFDFCCDDC
5 eqss FC=FDFCFDFDFC
6 eqss C=DCDDC
7 4 5 6 3bitr4g F:A1-1BCADAFC=FDC=D