Metamath Proof Explorer


Theorem f1imapss

Description: Taking images under a one-to-one function preserves proper subsets. (Contributed by Stefan O'Rear, 30-Oct-2014)

Ref Expression
Assertion f1imapss F:A1-1BCADAFCFDCD

Proof

Step Hyp Ref Expression
1 f1imass F:A1-1BCADAFCFDCD
2 f1imaeq F:A1-1BCADAFC=FDC=D
3 2 notbid F:A1-1BCADA¬FC=FD¬C=D
4 1 3 anbi12d F:A1-1BCADAFCFD¬FC=FDCD¬C=D
5 dfpss2 FCFDFCFD¬FC=FD
6 dfpss2 CDCD¬C=D
7 4 5 6 3bitr4g F:A1-1BCADAFCFDCD