Metamath Proof Explorer


Theorem f1ocnvfv3

Description: Value of the converse of a one-to-one onto function. (Contributed by NM, 26-May-2006) (Proof shortened by Mario Carneiro, 24-Dec-2016)

Ref Expression
Assertion f1ocnvfv3 F:A1-1 ontoBCBF-1C=ιxA|Fx=C

Proof

Step Hyp Ref Expression
1 f1ocnvdm F:A1-1 ontoBCBF-1CA
2 f1ocnvfvb F:A1-1 ontoBxACBFx=CF-1C=x
3 2 3expa F:A1-1 ontoBxACBFx=CF-1C=x
4 3 an32s F:A1-1 ontoBCBxAFx=CF-1C=x
5 eqcom x=F-1CF-1C=x
6 4 5 bitr4di F:A1-1 ontoBCBxAFx=Cx=F-1C
7 1 6 riota5 F:A1-1 ontoBCBιxA|Fx=C=F-1C
8 7 eqcomd F:A1-1 ontoBCBF-1C=ιxA|Fx=C