Metamath Proof Explorer


Theorem f1orescnv

Description: The converse of a one-to-one-onto restricted function. (Contributed by Paul Chapman, 21-Apr-2008)

Ref Expression
Assertion f1orescnv FunF-1FR:R1-1 ontoPF-1P:P1-1 ontoR

Proof

Step Hyp Ref Expression
1 f1ocnv FR:R1-1 ontoPFR-1:P1-1 ontoR
2 1 adantl FunF-1FR:R1-1 ontoPFR-1:P1-1 ontoR
3 funcnvres FunF-1FR-1=F-1FR
4 df-ima FR=ranFR
5 dff1o5 FR:R1-1 ontoPFR:R1-1PranFR=P
6 5 simprbi FR:R1-1 ontoPranFR=P
7 4 6 eqtrid FR:R1-1 ontoPFR=P
8 7 reseq2d FR:R1-1 ontoPF-1FR=F-1P
9 3 8 sylan9eq FunF-1FR:R1-1 ontoPFR-1=F-1P
10 9 f1oeq1d FunF-1FR:R1-1 ontoPFR-1:P1-1 ontoRF-1P:P1-1 ontoR
11 2 10 mpbid FunF-1FR:R1-1 ontoPF-1P:P1-1 ontoR