Metamath Proof Explorer


Theorem f1sn2g

Description: A function that maps a singleton to a class is injective. (Contributed by Zhi Wang, 1-Oct-2024)

Ref Expression
Assertion f1sn2g AVF:ABF:A1-1B

Proof

Step Hyp Ref Expression
1 fsn2g AVF:ABFABF=AFA
2 1 biimpa AVF:ABFABF=AFA
3 2 simpld AVF:ABFAB
4 f1sng AVFABAFA:A1-1B
5 3 4 syldan AVF:ABAFA:A1-1B
6 f1eq1 F=AFAF:A1-1BAFA:A1-1B
7 2 6 simpl2im AVF:ABF:A1-1BAFA:A1-1B
8 5 7 mpbird AVF:ABF:A1-1B