Metamath Proof Explorer


Theorem f1veqaeq

Description: If the values of a one-to-one function for two arguments are equal, the arguments themselves must be equal. (Contributed by Alexander van der Vekens, 12-Nov-2017)

Ref Expression
Assertion f1veqaeq F:A1-1BCADAFC=FDC=D

Proof

Step Hyp Ref Expression
1 dff13 F:A1-1BF:ABcAdAFc=Fdc=d
2 fveqeq2 c=CFc=FdFC=Fd
3 eqeq1 c=Cc=dC=d
4 2 3 imbi12d c=CFc=Fdc=dFC=FdC=d
5 fveq2 d=DFd=FD
6 5 eqeq2d d=DFC=FdFC=FD
7 eqeq2 d=DC=dC=D
8 6 7 imbi12d d=DFC=FdC=dFC=FDC=D
9 4 8 rspc2v CADAcAdAFc=Fdc=dFC=FDC=D
10 9 com12 cAdAFc=Fdc=dCADAFC=FDC=D
11 1 10 simplbiim F:A1-1BCADAFC=FDC=D
12 11 imp F:A1-1BCADAFC=FDC=D