Metamath Proof Explorer


Theorem f1vrnfibi

Description: A one-to-one function which is a set is finite if and only if its range is finite. See also f1dmvrnfibi . (Contributed by AV, 10-Jan-2020)

Ref Expression
Assertion f1vrnfibi FVF:A1-1BFFinranFFin

Proof

Step Hyp Ref Expression
1 f1dm F:A1-1BdomF=A
2 dmexg FVdomFV
3 eleq1 A=domFAVdomFV
4 3 eqcoms domF=AAVdomFV
5 2 4 imbitrrid domF=AFVAV
6 1 5 syl F:A1-1BFVAV
7 6 impcom FVF:A1-1BAV
8 f1dmvrnfibi AVF:A1-1BFFinranFFin
9 7 8 sylancom FVF:A1-1BFFinranFFin