Metamath Proof Explorer


Theorem fafv2elcdm

Description: An alternate function value belongs to the codomain of the function, analogous to ffvelcdm . (Contributed by AV, 2-Sep-2022)

Ref Expression
Assertion fafv2elcdm F:ABCAF''''CB

Proof

Step Hyp Ref Expression
1 ffn F:ABFFnA
2 fnafv2elrn FFnACAF''''CranF
3 1 2 sylan F:ABCAF''''CranF
4 frn F:ABranFB
5 4 sseld F:ABF''''CranFF''''CB
6 5 adantr F:ABCAF''''CranFF''''CB
7 3 6 mpd F:ABCAF''''CB