Metamath Proof Explorer


Theorem fallfacval

Description: The value of the falling factorial function. (Contributed by Scott Fenton, 5-Jan-2018)

Ref Expression
Assertion fallfacval AN0AN_=k=0N1Ak

Proof

Step Hyp Ref Expression
1 oveq1 x=Axk=Ak
2 1 prodeq2sdv x=Ak=0n1xk=k=0n1Ak
3 oveq1 n=Nn1=N1
4 3 oveq2d n=N0n1=0N1
5 4 prodeq1d n=Nk=0n1Ak=k=0N1Ak
6 df-fallfac FallFac=x,n0k=0n1xk
7 prodex k=0N1AkV
8 2 5 6 7 ovmpo AN0AN_=k=0N1Ak