Metamath Proof Explorer


Theorem faosnf0.11b

Description: B is called a non-limit ordinal if it is not a limit ordinal. (Contributed by RP, 27-Sep-2023)

Alling, Norman L. "Fundamentals of Analysis Over Surreal Numbers Fields." The Rocky Mountain Journal of Mathematics 19, no. 3 (1989): 565-73. http://www.jstor.org/stable/44237243.

Ref Expression
Assertion faosnf0.11b OrdA¬LimAAxOnA=sucx

Proof

Step Hyp Ref Expression
1 3ancomb OrdA¬LimAAOrdAA¬LimA
2 df-3an OrdAA¬LimAOrdAA¬LimA
3 df-ne A¬A=
4 3 anbi2i OrdAAOrdA¬A=
5 4 imbi1i OrdAAxOnA=sucxOrdA¬A=xOnA=sucx
6 pm5.6 OrdA¬A=xOnA=sucxOrdAA=xOnA=sucx
7 iman OrdAA=xOnA=sucx¬OrdA¬A=xOnA=sucx
8 5 6 7 3bitrri ¬OrdA¬A=xOnA=sucxOrdAAxOnA=sucx
9 dflim3 LimAOrdA¬A=xOnA=sucx
10 8 9 xchnxbir ¬LimAOrdAAxOnA=sucx
11 10 anbi2i OrdAA¬LimAOrdAAOrdAAxOnA=sucx
12 1 2 11 3bitri OrdA¬LimAAOrdAAOrdAAxOnA=sucx
13 pm3.35 OrdAAOrdAAxOnA=sucxxOnA=sucx
14 12 13 sylbi OrdA¬LimAAxOnA=sucx