Metamath Proof Explorer


Theorem faosnf0.11b

Description: B is called a non-limit ordinal if it is not a limit ordinal. (Contributed by RP, 27-Sep-2023)

Alling, Norman L. "Fundamentals of Analysis Over Surreal Numbers Fields." The Rocky Mountain Journal of Mathematics 19, no. 3 (1989): 565-73. http://www.jstor.org/stable/44237243.

Ref Expression
Assertion faosnf0.11b ( ( Ord 𝐴 ∧ ¬ Lim 𝐴𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 )

Proof

Step Hyp Ref Expression
1 3ancomb ( ( Ord 𝐴 ∧ ¬ Lim 𝐴𝐴 ≠ ∅ ) ↔ ( Ord 𝐴𝐴 ≠ ∅ ∧ ¬ Lim 𝐴 ) )
2 df-3an ( ( Ord 𝐴𝐴 ≠ ∅ ∧ ¬ Lim 𝐴 ) ↔ ( ( Ord 𝐴𝐴 ≠ ∅ ) ∧ ¬ Lim 𝐴 ) )
3 df-ne ( 𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅ )
4 3 anbi2i ( ( Ord 𝐴𝐴 ≠ ∅ ) ↔ ( Ord 𝐴 ∧ ¬ 𝐴 = ∅ ) )
5 4 imbi1i ( ( ( Ord 𝐴𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ↔ ( ( Ord 𝐴 ∧ ¬ 𝐴 = ∅ ) → ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) )
6 pm5.6 ( ( ( Ord 𝐴 ∧ ¬ 𝐴 = ∅ ) → ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ↔ ( Ord 𝐴 → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) )
7 iman ( ( Ord 𝐴 → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) ↔ ¬ ( Ord 𝐴 ∧ ¬ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) )
8 5 6 7 3bitrri ( ¬ ( Ord 𝐴 ∧ ¬ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) ↔ ( ( Ord 𝐴𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) )
9 dflim3 ( Lim 𝐴 ↔ ( Ord 𝐴 ∧ ¬ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) )
10 8 9 xchnxbir ( ¬ Lim 𝐴 ↔ ( ( Ord 𝐴𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) )
11 10 anbi2i ( ( ( Ord 𝐴𝐴 ≠ ∅ ) ∧ ¬ Lim 𝐴 ) ↔ ( ( Ord 𝐴𝐴 ≠ ∅ ) ∧ ( ( Ord 𝐴𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) )
12 1 2 11 3bitri ( ( Ord 𝐴 ∧ ¬ Lim 𝐴𝐴 ≠ ∅ ) ↔ ( ( Ord 𝐴𝐴 ≠ ∅ ) ∧ ( ( Ord 𝐴𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) )
13 pm3.35 ( ( ( Ord 𝐴𝐴 ≠ ∅ ) ∧ ( ( Ord 𝐴𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) → ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 )
14 12 13 sylbi ( ( Ord 𝐴 ∧ ¬ Lim 𝐴𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 )