| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fssxp |
⊢ ( 𝑓 : 𝑥 ⟶ { 1o , 2o } → 𝑓 ⊆ ( 𝑥 × { 1o , 2o } ) ) |
| 2 |
1
|
adantl |
⊢ ( ( 𝑥 ∈ On ∧ 𝑓 : 𝑥 ⟶ { 1o , 2o } ) → 𝑓 ⊆ ( 𝑥 × { 1o , 2o } ) ) |
| 3 |
|
onss |
⊢ ( 𝑥 ∈ On → 𝑥 ⊆ On ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝑥 ∈ On ∧ 𝑓 : 𝑥 ⟶ { 1o , 2o } ) → 𝑥 ⊆ On ) |
| 5 |
|
xpss1 |
⊢ ( 𝑥 ⊆ On → ( 𝑥 × { 1o , 2o } ) ⊆ ( On × { 1o , 2o } ) ) |
| 6 |
4 5
|
syl |
⊢ ( ( 𝑥 ∈ On ∧ 𝑓 : 𝑥 ⟶ { 1o , 2o } ) → ( 𝑥 × { 1o , 2o } ) ⊆ ( On × { 1o , 2o } ) ) |
| 7 |
2 6
|
sstrd |
⊢ ( ( 𝑥 ∈ On ∧ 𝑓 : 𝑥 ⟶ { 1o , 2o } ) → 𝑓 ⊆ ( On × { 1o , 2o } ) ) |
| 8 |
|
velpw |
⊢ ( 𝑓 ∈ 𝒫 ( On × { 1o , 2o } ) ↔ 𝑓 ⊆ ( On × { 1o , 2o } ) ) |
| 9 |
7 8
|
sylibr |
⊢ ( ( 𝑥 ∈ On ∧ 𝑓 : 𝑥 ⟶ { 1o , 2o } ) → 𝑓 ∈ 𝒫 ( On × { 1o , 2o } ) ) |
| 10 |
|
ffun |
⊢ ( 𝑓 : 𝑥 ⟶ { 1o , 2o } → Fun 𝑓 ) |
| 11 |
10
|
adantl |
⊢ ( ( 𝑥 ∈ On ∧ 𝑓 : 𝑥 ⟶ { 1o , 2o } ) → Fun 𝑓 ) |
| 12 |
|
fdm |
⊢ ( 𝑓 : 𝑥 ⟶ { 1o , 2o } → dom 𝑓 = 𝑥 ) |
| 13 |
12
|
adantl |
⊢ ( ( 𝑥 ∈ On ∧ 𝑓 : 𝑥 ⟶ { 1o , 2o } ) → dom 𝑓 = 𝑥 ) |
| 14 |
|
simpl |
⊢ ( ( 𝑥 ∈ On ∧ 𝑓 : 𝑥 ⟶ { 1o , 2o } ) → 𝑥 ∈ On ) |
| 15 |
13 14
|
eqeltrd |
⊢ ( ( 𝑥 ∈ On ∧ 𝑓 : 𝑥 ⟶ { 1o , 2o } ) → dom 𝑓 ∈ On ) |
| 16 |
9 11 15
|
jca32 |
⊢ ( ( 𝑥 ∈ On ∧ 𝑓 : 𝑥 ⟶ { 1o , 2o } ) → ( 𝑓 ∈ 𝒫 ( On × { 1o , 2o } ) ∧ ( Fun 𝑓 ∧ dom 𝑓 ∈ On ) ) ) |
| 17 |
16
|
rexlimiva |
⊢ ( ∃ 𝑥 ∈ On 𝑓 : 𝑥 ⟶ { 1o , 2o } → ( 𝑓 ∈ 𝒫 ( On × { 1o , 2o } ) ∧ ( Fun 𝑓 ∧ dom 𝑓 ∈ On ) ) ) |
| 18 |
|
simprr |
⊢ ( ( 𝑓 ∈ 𝒫 ( On × { 1o , 2o } ) ∧ ( Fun 𝑓 ∧ dom 𝑓 ∈ On ) ) → dom 𝑓 ∈ On ) |
| 19 |
|
feq2 |
⊢ ( 𝑥 = dom 𝑓 → ( 𝑓 : 𝑥 ⟶ { 1o , 2o } ↔ 𝑓 : dom 𝑓 ⟶ { 1o , 2o } ) ) |
| 20 |
19
|
adantl |
⊢ ( ( ( 𝑓 ∈ 𝒫 ( On × { 1o , 2o } ) ∧ ( Fun 𝑓 ∧ dom 𝑓 ∈ On ) ) ∧ 𝑥 = dom 𝑓 ) → ( 𝑓 : 𝑥 ⟶ { 1o , 2o } ↔ 𝑓 : dom 𝑓 ⟶ { 1o , 2o } ) ) |
| 21 |
|
simpl |
⊢ ( ( Fun 𝑓 ∧ dom 𝑓 ∈ On ) → Fun 𝑓 ) |
| 22 |
|
elpwi |
⊢ ( 𝑓 ∈ 𝒫 ( On × { 1o , 2o } ) → 𝑓 ⊆ ( On × { 1o , 2o } ) ) |
| 23 |
|
funssxp |
⊢ ( ( Fun 𝑓 ∧ 𝑓 ⊆ ( On × { 1o , 2o } ) ) ↔ ( 𝑓 : dom 𝑓 ⟶ { 1o , 2o } ∧ dom 𝑓 ⊆ On ) ) |
| 24 |
23
|
simplbi |
⊢ ( ( Fun 𝑓 ∧ 𝑓 ⊆ ( On × { 1o , 2o } ) ) → 𝑓 : dom 𝑓 ⟶ { 1o , 2o } ) |
| 25 |
21 22 24
|
syl2anr |
⊢ ( ( 𝑓 ∈ 𝒫 ( On × { 1o , 2o } ) ∧ ( Fun 𝑓 ∧ dom 𝑓 ∈ On ) ) → 𝑓 : dom 𝑓 ⟶ { 1o , 2o } ) |
| 26 |
18 20 25
|
rspcedvd |
⊢ ( ( 𝑓 ∈ 𝒫 ( On × { 1o , 2o } ) ∧ ( Fun 𝑓 ∧ dom 𝑓 ∈ On ) ) → ∃ 𝑥 ∈ On 𝑓 : 𝑥 ⟶ { 1o , 2o } ) |
| 27 |
17 26
|
impbii |
⊢ ( ∃ 𝑥 ∈ On 𝑓 : 𝑥 ⟶ { 1o , 2o } ↔ ( 𝑓 ∈ 𝒫 ( On × { 1o , 2o } ) ∧ ( Fun 𝑓 ∧ dom 𝑓 ∈ On ) ) ) |
| 28 |
27
|
abbii |
⊢ { 𝑓 ∣ ∃ 𝑥 ∈ On 𝑓 : 𝑥 ⟶ { 1o , 2o } } = { 𝑓 ∣ ( 𝑓 ∈ 𝒫 ( On × { 1o , 2o } ) ∧ ( Fun 𝑓 ∧ dom 𝑓 ∈ On ) ) } |
| 29 |
|
df-no |
⊢ No = { 𝑓 ∣ ∃ 𝑥 ∈ On 𝑓 : 𝑥 ⟶ { 1o , 2o } } |
| 30 |
|
df-rab |
⊢ { 𝑓 ∈ 𝒫 ( On × { 1o , 2o } ) ∣ ( Fun 𝑓 ∧ dom 𝑓 ∈ On ) } = { 𝑓 ∣ ( 𝑓 ∈ 𝒫 ( On × { 1o , 2o } ) ∧ ( Fun 𝑓 ∧ dom 𝑓 ∈ On ) ) } |
| 31 |
28 29 30
|
3eqtr4i |
⊢ No = { 𝑓 ∈ 𝒫 ( On × { 1o , 2o } ) ∣ ( Fun 𝑓 ∧ dom 𝑓 ∈ On ) } |