| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fssxp | ⊢ ( 𝑓 : 𝑥 ⟶ { 1o ,  2o }  →  𝑓  ⊆  ( 𝑥  ×  { 1o ,  2o } ) ) | 
						
							| 2 | 1 | adantl | ⊢ ( ( 𝑥  ∈  On  ∧  𝑓 : 𝑥 ⟶ { 1o ,  2o } )  →  𝑓  ⊆  ( 𝑥  ×  { 1o ,  2o } ) ) | 
						
							| 3 |  | onss | ⊢ ( 𝑥  ∈  On  →  𝑥  ⊆  On ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝑥  ∈  On  ∧  𝑓 : 𝑥 ⟶ { 1o ,  2o } )  →  𝑥  ⊆  On ) | 
						
							| 5 |  | xpss1 | ⊢ ( 𝑥  ⊆  On  →  ( 𝑥  ×  { 1o ,  2o } )  ⊆  ( On  ×  { 1o ,  2o } ) ) | 
						
							| 6 | 4 5 | syl | ⊢ ( ( 𝑥  ∈  On  ∧  𝑓 : 𝑥 ⟶ { 1o ,  2o } )  →  ( 𝑥  ×  { 1o ,  2o } )  ⊆  ( On  ×  { 1o ,  2o } ) ) | 
						
							| 7 | 2 6 | sstrd | ⊢ ( ( 𝑥  ∈  On  ∧  𝑓 : 𝑥 ⟶ { 1o ,  2o } )  →  𝑓  ⊆  ( On  ×  { 1o ,  2o } ) ) | 
						
							| 8 |  | velpw | ⊢ ( 𝑓  ∈  𝒫  ( On  ×  { 1o ,  2o } )  ↔  𝑓  ⊆  ( On  ×  { 1o ,  2o } ) ) | 
						
							| 9 | 7 8 | sylibr | ⊢ ( ( 𝑥  ∈  On  ∧  𝑓 : 𝑥 ⟶ { 1o ,  2o } )  →  𝑓  ∈  𝒫  ( On  ×  { 1o ,  2o } ) ) | 
						
							| 10 |  | ffun | ⊢ ( 𝑓 : 𝑥 ⟶ { 1o ,  2o }  →  Fun  𝑓 ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝑥  ∈  On  ∧  𝑓 : 𝑥 ⟶ { 1o ,  2o } )  →  Fun  𝑓 ) | 
						
							| 12 |  | fdm | ⊢ ( 𝑓 : 𝑥 ⟶ { 1o ,  2o }  →  dom  𝑓  =  𝑥 ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( 𝑥  ∈  On  ∧  𝑓 : 𝑥 ⟶ { 1o ,  2o } )  →  dom  𝑓  =  𝑥 ) | 
						
							| 14 |  | simpl | ⊢ ( ( 𝑥  ∈  On  ∧  𝑓 : 𝑥 ⟶ { 1o ,  2o } )  →  𝑥  ∈  On ) | 
						
							| 15 | 13 14 | eqeltrd | ⊢ ( ( 𝑥  ∈  On  ∧  𝑓 : 𝑥 ⟶ { 1o ,  2o } )  →  dom  𝑓  ∈  On ) | 
						
							| 16 | 9 11 15 | jca32 | ⊢ ( ( 𝑥  ∈  On  ∧  𝑓 : 𝑥 ⟶ { 1o ,  2o } )  →  ( 𝑓  ∈  𝒫  ( On  ×  { 1o ,  2o } )  ∧  ( Fun  𝑓  ∧  dom  𝑓  ∈  On ) ) ) | 
						
							| 17 | 16 | rexlimiva | ⊢ ( ∃ 𝑥  ∈  On 𝑓 : 𝑥 ⟶ { 1o ,  2o }  →  ( 𝑓  ∈  𝒫  ( On  ×  { 1o ,  2o } )  ∧  ( Fun  𝑓  ∧  dom  𝑓  ∈  On ) ) ) | 
						
							| 18 |  | simprr | ⊢ ( ( 𝑓  ∈  𝒫  ( On  ×  { 1o ,  2o } )  ∧  ( Fun  𝑓  ∧  dom  𝑓  ∈  On ) )  →  dom  𝑓  ∈  On ) | 
						
							| 19 |  | feq2 | ⊢ ( 𝑥  =  dom  𝑓  →  ( 𝑓 : 𝑥 ⟶ { 1o ,  2o }  ↔  𝑓 : dom  𝑓 ⟶ { 1o ,  2o } ) ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( ( 𝑓  ∈  𝒫  ( On  ×  { 1o ,  2o } )  ∧  ( Fun  𝑓  ∧  dom  𝑓  ∈  On ) )  ∧  𝑥  =  dom  𝑓 )  →  ( 𝑓 : 𝑥 ⟶ { 1o ,  2o }  ↔  𝑓 : dom  𝑓 ⟶ { 1o ,  2o } ) ) | 
						
							| 21 |  | simpl | ⊢ ( ( Fun  𝑓  ∧  dom  𝑓  ∈  On )  →  Fun  𝑓 ) | 
						
							| 22 |  | elpwi | ⊢ ( 𝑓  ∈  𝒫  ( On  ×  { 1o ,  2o } )  →  𝑓  ⊆  ( On  ×  { 1o ,  2o } ) ) | 
						
							| 23 |  | funssxp | ⊢ ( ( Fun  𝑓  ∧  𝑓  ⊆  ( On  ×  { 1o ,  2o } ) )  ↔  ( 𝑓 : dom  𝑓 ⟶ { 1o ,  2o }  ∧  dom  𝑓  ⊆  On ) ) | 
						
							| 24 | 23 | simplbi | ⊢ ( ( Fun  𝑓  ∧  𝑓  ⊆  ( On  ×  { 1o ,  2o } ) )  →  𝑓 : dom  𝑓 ⟶ { 1o ,  2o } ) | 
						
							| 25 | 21 22 24 | syl2anr | ⊢ ( ( 𝑓  ∈  𝒫  ( On  ×  { 1o ,  2o } )  ∧  ( Fun  𝑓  ∧  dom  𝑓  ∈  On ) )  →  𝑓 : dom  𝑓 ⟶ { 1o ,  2o } ) | 
						
							| 26 | 18 20 25 | rspcedvd | ⊢ ( ( 𝑓  ∈  𝒫  ( On  ×  { 1o ,  2o } )  ∧  ( Fun  𝑓  ∧  dom  𝑓  ∈  On ) )  →  ∃ 𝑥  ∈  On 𝑓 : 𝑥 ⟶ { 1o ,  2o } ) | 
						
							| 27 | 17 26 | impbii | ⊢ ( ∃ 𝑥  ∈  On 𝑓 : 𝑥 ⟶ { 1o ,  2o }  ↔  ( 𝑓  ∈  𝒫  ( On  ×  { 1o ,  2o } )  ∧  ( Fun  𝑓  ∧  dom  𝑓  ∈  On ) ) ) | 
						
							| 28 | 27 | abbii | ⊢ { 𝑓  ∣  ∃ 𝑥  ∈  On 𝑓 : 𝑥 ⟶ { 1o ,  2o } }  =  { 𝑓  ∣  ( 𝑓  ∈  𝒫  ( On  ×  { 1o ,  2o } )  ∧  ( Fun  𝑓  ∧  dom  𝑓  ∈  On ) ) } | 
						
							| 29 |  | df-no | ⊢  No   =  { 𝑓  ∣  ∃ 𝑥  ∈  On 𝑓 : 𝑥 ⟶ { 1o ,  2o } } | 
						
							| 30 |  | df-rab | ⊢ { 𝑓  ∈  𝒫  ( On  ×  { 1o ,  2o } )  ∣  ( Fun  𝑓  ∧  dom  𝑓  ∈  On ) }  =  { 𝑓  ∣  ( 𝑓  ∈  𝒫  ( On  ×  { 1o ,  2o } )  ∧  ( Fun  𝑓  ∧  dom  𝑓  ∈  On ) ) } | 
						
							| 31 | 28 29 30 | 3eqtr4i | ⊢  No   =  { 𝑓  ∈  𝒫  ( On  ×  { 1o ,  2o } )  ∣  ( Fun  𝑓  ∧  dom  𝑓  ∈  On ) } |