| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fssxp |
|- ( f : x --> { 1o , 2o } -> f C_ ( x X. { 1o , 2o } ) ) |
| 2 |
1
|
adantl |
|- ( ( x e. On /\ f : x --> { 1o , 2o } ) -> f C_ ( x X. { 1o , 2o } ) ) |
| 3 |
|
onss |
|- ( x e. On -> x C_ On ) |
| 4 |
3
|
adantr |
|- ( ( x e. On /\ f : x --> { 1o , 2o } ) -> x C_ On ) |
| 5 |
|
xpss1 |
|- ( x C_ On -> ( x X. { 1o , 2o } ) C_ ( On X. { 1o , 2o } ) ) |
| 6 |
4 5
|
syl |
|- ( ( x e. On /\ f : x --> { 1o , 2o } ) -> ( x X. { 1o , 2o } ) C_ ( On X. { 1o , 2o } ) ) |
| 7 |
2 6
|
sstrd |
|- ( ( x e. On /\ f : x --> { 1o , 2o } ) -> f C_ ( On X. { 1o , 2o } ) ) |
| 8 |
|
velpw |
|- ( f e. ~P ( On X. { 1o , 2o } ) <-> f C_ ( On X. { 1o , 2o } ) ) |
| 9 |
7 8
|
sylibr |
|- ( ( x e. On /\ f : x --> { 1o , 2o } ) -> f e. ~P ( On X. { 1o , 2o } ) ) |
| 10 |
|
ffun |
|- ( f : x --> { 1o , 2o } -> Fun f ) |
| 11 |
10
|
adantl |
|- ( ( x e. On /\ f : x --> { 1o , 2o } ) -> Fun f ) |
| 12 |
|
fdm |
|- ( f : x --> { 1o , 2o } -> dom f = x ) |
| 13 |
12
|
adantl |
|- ( ( x e. On /\ f : x --> { 1o , 2o } ) -> dom f = x ) |
| 14 |
|
simpl |
|- ( ( x e. On /\ f : x --> { 1o , 2o } ) -> x e. On ) |
| 15 |
13 14
|
eqeltrd |
|- ( ( x e. On /\ f : x --> { 1o , 2o } ) -> dom f e. On ) |
| 16 |
9 11 15
|
jca32 |
|- ( ( x e. On /\ f : x --> { 1o , 2o } ) -> ( f e. ~P ( On X. { 1o , 2o } ) /\ ( Fun f /\ dom f e. On ) ) ) |
| 17 |
16
|
rexlimiva |
|- ( E. x e. On f : x --> { 1o , 2o } -> ( f e. ~P ( On X. { 1o , 2o } ) /\ ( Fun f /\ dom f e. On ) ) ) |
| 18 |
|
simprr |
|- ( ( f e. ~P ( On X. { 1o , 2o } ) /\ ( Fun f /\ dom f e. On ) ) -> dom f e. On ) |
| 19 |
|
feq2 |
|- ( x = dom f -> ( f : x --> { 1o , 2o } <-> f : dom f --> { 1o , 2o } ) ) |
| 20 |
19
|
adantl |
|- ( ( ( f e. ~P ( On X. { 1o , 2o } ) /\ ( Fun f /\ dom f e. On ) ) /\ x = dom f ) -> ( f : x --> { 1o , 2o } <-> f : dom f --> { 1o , 2o } ) ) |
| 21 |
|
simpl |
|- ( ( Fun f /\ dom f e. On ) -> Fun f ) |
| 22 |
|
elpwi |
|- ( f e. ~P ( On X. { 1o , 2o } ) -> f C_ ( On X. { 1o , 2o } ) ) |
| 23 |
|
funssxp |
|- ( ( Fun f /\ f C_ ( On X. { 1o , 2o } ) ) <-> ( f : dom f --> { 1o , 2o } /\ dom f C_ On ) ) |
| 24 |
23
|
simplbi |
|- ( ( Fun f /\ f C_ ( On X. { 1o , 2o } ) ) -> f : dom f --> { 1o , 2o } ) |
| 25 |
21 22 24
|
syl2anr |
|- ( ( f e. ~P ( On X. { 1o , 2o } ) /\ ( Fun f /\ dom f e. On ) ) -> f : dom f --> { 1o , 2o } ) |
| 26 |
18 20 25
|
rspcedvd |
|- ( ( f e. ~P ( On X. { 1o , 2o } ) /\ ( Fun f /\ dom f e. On ) ) -> E. x e. On f : x --> { 1o , 2o } ) |
| 27 |
17 26
|
impbii |
|- ( E. x e. On f : x --> { 1o , 2o } <-> ( f e. ~P ( On X. { 1o , 2o } ) /\ ( Fun f /\ dom f e. On ) ) ) |
| 28 |
27
|
abbii |
|- { f | E. x e. On f : x --> { 1o , 2o } } = { f | ( f e. ~P ( On X. { 1o , 2o } ) /\ ( Fun f /\ dom f e. On ) ) } |
| 29 |
|
df-no |
|- No = { f | E. x e. On f : x --> { 1o , 2o } } |
| 30 |
|
df-rab |
|- { f e. ~P ( On X. { 1o , 2o } ) | ( Fun f /\ dom f e. On ) } = { f | ( f e. ~P ( On X. { 1o , 2o } ) /\ ( Fun f /\ dom f e. On ) ) } |
| 31 |
28 29 30
|
3eqtr4i |
|- No = { f e. ~P ( On X. { 1o , 2o } ) | ( Fun f /\ dom f e. On ) } |