| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fssxp |  |-  ( f : x --> { 1o , 2o } -> f C_ ( x X. { 1o , 2o } ) ) | 
						
							| 2 | 1 | adantl |  |-  ( ( x e. On /\ f : x --> { 1o , 2o } ) -> f C_ ( x X. { 1o , 2o } ) ) | 
						
							| 3 |  | onss |  |-  ( x e. On -> x C_ On ) | 
						
							| 4 | 3 | adantr |  |-  ( ( x e. On /\ f : x --> { 1o , 2o } ) -> x C_ On ) | 
						
							| 5 |  | xpss1 |  |-  ( x C_ On -> ( x X. { 1o , 2o } ) C_ ( On X. { 1o , 2o } ) ) | 
						
							| 6 | 4 5 | syl |  |-  ( ( x e. On /\ f : x --> { 1o , 2o } ) -> ( x X. { 1o , 2o } ) C_ ( On X. { 1o , 2o } ) ) | 
						
							| 7 | 2 6 | sstrd |  |-  ( ( x e. On /\ f : x --> { 1o , 2o } ) -> f C_ ( On X. { 1o , 2o } ) ) | 
						
							| 8 |  | velpw |  |-  ( f e. ~P ( On X. { 1o , 2o } ) <-> f C_ ( On X. { 1o , 2o } ) ) | 
						
							| 9 | 7 8 | sylibr |  |-  ( ( x e. On /\ f : x --> { 1o , 2o } ) -> f e. ~P ( On X. { 1o , 2o } ) ) | 
						
							| 10 |  | ffun |  |-  ( f : x --> { 1o , 2o } -> Fun f ) | 
						
							| 11 | 10 | adantl |  |-  ( ( x e. On /\ f : x --> { 1o , 2o } ) -> Fun f ) | 
						
							| 12 |  | fdm |  |-  ( f : x --> { 1o , 2o } -> dom f = x ) | 
						
							| 13 | 12 | adantl |  |-  ( ( x e. On /\ f : x --> { 1o , 2o } ) -> dom f = x ) | 
						
							| 14 |  | simpl |  |-  ( ( x e. On /\ f : x --> { 1o , 2o } ) -> x e. On ) | 
						
							| 15 | 13 14 | eqeltrd |  |-  ( ( x e. On /\ f : x --> { 1o , 2o } ) -> dom f e. On ) | 
						
							| 16 | 9 11 15 | jca32 |  |-  ( ( x e. On /\ f : x --> { 1o , 2o } ) -> ( f e. ~P ( On X. { 1o , 2o } ) /\ ( Fun f /\ dom f e. On ) ) ) | 
						
							| 17 | 16 | rexlimiva |  |-  ( E. x e. On f : x --> { 1o , 2o } -> ( f e. ~P ( On X. { 1o , 2o } ) /\ ( Fun f /\ dom f e. On ) ) ) | 
						
							| 18 |  | simprr |  |-  ( ( f e. ~P ( On X. { 1o , 2o } ) /\ ( Fun f /\ dom f e. On ) ) -> dom f e. On ) | 
						
							| 19 |  | feq2 |  |-  ( x = dom f -> ( f : x --> { 1o , 2o } <-> f : dom f --> { 1o , 2o } ) ) | 
						
							| 20 | 19 | adantl |  |-  ( ( ( f e. ~P ( On X. { 1o , 2o } ) /\ ( Fun f /\ dom f e. On ) ) /\ x = dom f ) -> ( f : x --> { 1o , 2o } <-> f : dom f --> { 1o , 2o } ) ) | 
						
							| 21 |  | simpl |  |-  ( ( Fun f /\ dom f e. On ) -> Fun f ) | 
						
							| 22 |  | elpwi |  |-  ( f e. ~P ( On X. { 1o , 2o } ) -> f C_ ( On X. { 1o , 2o } ) ) | 
						
							| 23 |  | funssxp |  |-  ( ( Fun f /\ f C_ ( On X. { 1o , 2o } ) ) <-> ( f : dom f --> { 1o , 2o } /\ dom f C_ On ) ) | 
						
							| 24 | 23 | simplbi |  |-  ( ( Fun f /\ f C_ ( On X. { 1o , 2o } ) ) -> f : dom f --> { 1o , 2o } ) | 
						
							| 25 | 21 22 24 | syl2anr |  |-  ( ( f e. ~P ( On X. { 1o , 2o } ) /\ ( Fun f /\ dom f e. On ) ) -> f : dom f --> { 1o , 2o } ) | 
						
							| 26 | 18 20 25 | rspcedvd |  |-  ( ( f e. ~P ( On X. { 1o , 2o } ) /\ ( Fun f /\ dom f e. On ) ) -> E. x e. On f : x --> { 1o , 2o } ) | 
						
							| 27 | 17 26 | impbii |  |-  ( E. x e. On f : x --> { 1o , 2o } <-> ( f e. ~P ( On X. { 1o , 2o } ) /\ ( Fun f /\ dom f e. On ) ) ) | 
						
							| 28 | 27 | abbii |  |-  { f | E. x e. On f : x --> { 1o , 2o } } = { f | ( f e. ~P ( On X. { 1o , 2o } ) /\ ( Fun f /\ dom f e. On ) ) } | 
						
							| 29 |  | df-no |  |-  No = { f | E. x e. On f : x --> { 1o , 2o } } | 
						
							| 30 |  | df-rab |  |-  { f e. ~P ( On X. { 1o , 2o } ) | ( Fun f /\ dom f e. On ) } = { f | ( f e. ~P ( On X. { 1o , 2o } ) /\ ( Fun f /\ dom f e. On ) ) } | 
						
							| 31 | 28 29 30 | 3eqtr4i |  |-  No = { f e. ~P ( On X. { 1o , 2o } ) | ( Fun f /\ dom f e. On ) } |