Metamath Proof Explorer


Theorem dfno2

Description: A surreal number, in the functional sign expansion representation, is a function which maps from an ordinal into a set of two possible signs. (Contributed by RP, 12-Jan-2025)

Ref Expression
Assertion dfno2 No = f 𝒫 On × 1 𝑜 2 𝑜 | Fun f dom f On

Proof

Step Hyp Ref Expression
1 fssxp f : x 1 𝑜 2 𝑜 f x × 1 𝑜 2 𝑜
2 1 adantl x On f : x 1 𝑜 2 𝑜 f x × 1 𝑜 2 𝑜
3 onss x On x On
4 3 adantr x On f : x 1 𝑜 2 𝑜 x On
5 xpss1 x On x × 1 𝑜 2 𝑜 On × 1 𝑜 2 𝑜
6 4 5 syl x On f : x 1 𝑜 2 𝑜 x × 1 𝑜 2 𝑜 On × 1 𝑜 2 𝑜
7 2 6 sstrd x On f : x 1 𝑜 2 𝑜 f On × 1 𝑜 2 𝑜
8 velpw f 𝒫 On × 1 𝑜 2 𝑜 f On × 1 𝑜 2 𝑜
9 7 8 sylibr x On f : x 1 𝑜 2 𝑜 f 𝒫 On × 1 𝑜 2 𝑜
10 ffun f : x 1 𝑜 2 𝑜 Fun f
11 10 adantl x On f : x 1 𝑜 2 𝑜 Fun f
12 fdm f : x 1 𝑜 2 𝑜 dom f = x
13 12 adantl x On f : x 1 𝑜 2 𝑜 dom f = x
14 simpl x On f : x 1 𝑜 2 𝑜 x On
15 13 14 eqeltrd x On f : x 1 𝑜 2 𝑜 dom f On
16 9 11 15 jca32 x On f : x 1 𝑜 2 𝑜 f 𝒫 On × 1 𝑜 2 𝑜 Fun f dom f On
17 16 rexlimiva x On f : x 1 𝑜 2 𝑜 f 𝒫 On × 1 𝑜 2 𝑜 Fun f dom f On
18 simprr f 𝒫 On × 1 𝑜 2 𝑜 Fun f dom f On dom f On
19 feq2 x = dom f f : x 1 𝑜 2 𝑜 f : dom f 1 𝑜 2 𝑜
20 19 adantl f 𝒫 On × 1 𝑜 2 𝑜 Fun f dom f On x = dom f f : x 1 𝑜 2 𝑜 f : dom f 1 𝑜 2 𝑜
21 simpl Fun f dom f On Fun f
22 elpwi f 𝒫 On × 1 𝑜 2 𝑜 f On × 1 𝑜 2 𝑜
23 funssxp Fun f f On × 1 𝑜 2 𝑜 f : dom f 1 𝑜 2 𝑜 dom f On
24 23 simplbi Fun f f On × 1 𝑜 2 𝑜 f : dom f 1 𝑜 2 𝑜
25 21 22 24 syl2anr f 𝒫 On × 1 𝑜 2 𝑜 Fun f dom f On f : dom f 1 𝑜 2 𝑜
26 18 20 25 rspcedvd f 𝒫 On × 1 𝑜 2 𝑜 Fun f dom f On x On f : x 1 𝑜 2 𝑜
27 17 26 impbii x On f : x 1 𝑜 2 𝑜 f 𝒫 On × 1 𝑜 2 𝑜 Fun f dom f On
28 27 abbii f | x On f : x 1 𝑜 2 𝑜 = f | f 𝒫 On × 1 𝑜 2 𝑜 Fun f dom f On
29 df-no No = f | x On f : x 1 𝑜 2 𝑜
30 df-rab f 𝒫 On × 1 𝑜 2 𝑜 | Fun f dom f On = f | f 𝒫 On × 1 𝑜 2 𝑜 Fun f dom f On
31 28 29 30 3eqtr4i No = f 𝒫 On × 1 𝑜 2 𝑜 | Fun f dom f On