Description: B is called a non-limit ordinal if it is not a limit ordinal. (Contributed by RP, 27-Sep-2023)
Alling, Norman L. "Fundamentals of Analysis Over Surreal Numbers Fields." The Rocky Mountain Journal of Mathematics 19, no. 3 (1989): 565-73. http://www.jstor.org/stable/44237243.
| Ref | Expression | ||
|---|---|---|---|
| Assertion | faosnf0.11b | |- ( ( Ord A /\ -. Lim A /\ A =/= (/) ) -> E. x e. On A = suc x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ancomb | |- ( ( Ord A /\ -. Lim A /\ A =/= (/) ) <-> ( Ord A /\ A =/= (/) /\ -. Lim A ) ) |
|
| 2 | df-3an | |- ( ( Ord A /\ A =/= (/) /\ -. Lim A ) <-> ( ( Ord A /\ A =/= (/) ) /\ -. Lim A ) ) |
|
| 3 | df-ne | |- ( A =/= (/) <-> -. A = (/) ) |
|
| 4 | 3 | anbi2i | |- ( ( Ord A /\ A =/= (/) ) <-> ( Ord A /\ -. A = (/) ) ) |
| 5 | 4 | imbi1i | |- ( ( ( Ord A /\ A =/= (/) ) -> E. x e. On A = suc x ) <-> ( ( Ord A /\ -. A = (/) ) -> E. x e. On A = suc x ) ) |
| 6 | pm5.6 | |- ( ( ( Ord A /\ -. A = (/) ) -> E. x e. On A = suc x ) <-> ( Ord A -> ( A = (/) \/ E. x e. On A = suc x ) ) ) |
|
| 7 | iman | |- ( ( Ord A -> ( A = (/) \/ E. x e. On A = suc x ) ) <-> -. ( Ord A /\ -. ( A = (/) \/ E. x e. On A = suc x ) ) ) |
|
| 8 | 5 6 7 | 3bitrri | |- ( -. ( Ord A /\ -. ( A = (/) \/ E. x e. On A = suc x ) ) <-> ( ( Ord A /\ A =/= (/) ) -> E. x e. On A = suc x ) ) |
| 9 | dflim3 | |- ( Lim A <-> ( Ord A /\ -. ( A = (/) \/ E. x e. On A = suc x ) ) ) |
|
| 10 | 8 9 | xchnxbir | |- ( -. Lim A <-> ( ( Ord A /\ A =/= (/) ) -> E. x e. On A = suc x ) ) |
| 11 | 10 | anbi2i | |- ( ( ( Ord A /\ A =/= (/) ) /\ -. Lim A ) <-> ( ( Ord A /\ A =/= (/) ) /\ ( ( Ord A /\ A =/= (/) ) -> E. x e. On A = suc x ) ) ) |
| 12 | 1 2 11 | 3bitri | |- ( ( Ord A /\ -. Lim A /\ A =/= (/) ) <-> ( ( Ord A /\ A =/= (/) ) /\ ( ( Ord A /\ A =/= (/) ) -> E. x e. On A = suc x ) ) ) |
| 13 | pm3.35 | |- ( ( ( Ord A /\ A =/= (/) ) /\ ( ( Ord A /\ A =/= (/) ) -> E. x e. On A = suc x ) ) -> E. x e. On A = suc x ) |
|
| 14 | 12 13 | sylbi | |- ( ( Ord A /\ -. Lim A /\ A =/= (/) ) -> E. x e. On A = suc x ) |