Metamath Proof Explorer


Theorem fbasssin

Description: A filter base contains subsets of its pairwise intersections. (Contributed by Jeff Hankins, 1-Sep-2009) (Revised by Jeff Hankins, 1-Dec-2010)

Ref Expression
Assertion fbasssin FfBasXAFBFxFxAB

Proof

Step Hyp Ref Expression
1 elfvdm FfBasXXdomfBas
2 isfbas2 XdomfBasFfBasXF𝒫XFFyFzFxFxyz
3 1 2 syl FfBasXFfBasXF𝒫XFFyFzFxFxyz
4 3 ibi FfBasXF𝒫XFFyFzFxFxyz
5 4 simprd FfBasXFFyFzFxFxyz
6 5 simp3d FfBasXyFzFxFxyz
7 ineq1 y=Ayz=Az
8 7 sseq2d y=AxyzxAz
9 8 rexbidv y=AxFxyzxFxAz
10 ineq2 z=BAz=AB
11 10 sseq2d z=BxAzxAB
12 11 rexbidv z=BxFxAzxFxAB
13 9 12 rspc2v AFBFyFzFxFxyzxFxAB
14 6 13 syl5com FfBasXAFBFxFxAB
15 14 3impib FfBasXAFBFxFxAB