Metamath Proof Explorer


Theorem fclstopon

Description: Reverse closure for the cluster point predicate. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion fclstopon AJfClusFJTopOnXFFilX

Proof

Step Hyp Ref Expression
1 fclstop AJfClusFJTop
2 istopon JTopOnXJTopX=J
3 2 baib JTopJTopOnXX=J
4 1 3 syl AJfClusFJTopOnXX=J
5 eqid J=J
6 5 fclsfil AJfClusFFFilJ
7 fveq2 X=JFilX=FilJ
8 7 eleq2d X=JFFilXFFilJ
9 6 8 syl5ibrcom AJfClusFX=JFFilX
10 filunibas FFilJF=J
11 6 10 syl AJfClusFF=J
12 filunibas FFilXF=X
13 12 eqeq1d FFilXF=JX=J
14 11 13 syl5ibcom AJfClusFFFilXX=J
15 9 14 impbid AJfClusFX=JFFilX
16 4 15 bitrd AJfClusFJTopOnXFFilX