Metamath Proof Explorer


Theorem feq123d

Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Hypotheses feq12d.1 φF=G
feq12d.2 φA=B
feq123d.3 φC=D
Assertion feq123d φF:ACG:BD

Proof

Step Hyp Ref Expression
1 feq12d.1 φF=G
2 feq12d.2 φA=B
3 feq123d.3 φC=D
4 1 2 feq12d φF:ACG:BC
5 3 feq3d φG:BCG:BD
6 4 5 bitrd φF:ACG:BD