Metamath Proof Explorer


Theorem feq12d

Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Hypotheses feq12d.1 φF=G
feq12d.2 φA=B
Assertion feq12d φF:ACG:BC

Proof

Step Hyp Ref Expression
1 feq12d.1 φF=G
2 feq12d.2 φA=B
3 1 feq1d φF:ACG:AC
4 2 feq2d φG:ACG:BC
5 3 4 bitrd φF:ACG:BC