Metamath Proof Explorer


Theorem ffdm

Description: A mapping is a partial function. (Contributed by NM, 25-Nov-2007)

Ref Expression
Assertion ffdm F:ABF:domFBdomFA

Proof

Step Hyp Ref Expression
1 fdm F:ABdomF=A
2 1 feq2d F:ABF:domFBF:AB
3 2 ibir F:ABF:domFB
4 eqimss domF=AdomFA
5 1 4 syl F:ABdomFA
6 3 5 jca F:ABF:domFBdomFA