Metamath Proof Explorer


Theorem ffz0iswrd

Description: A sequence with zero-based indices is a word. (Contributed by AV, 31-Jan-2018) (Proof shortened by AV, 13-Oct-2018) (Proof shortened by JJ, 18-Nov-2022)

Ref Expression
Assertion ffz0iswrd W:0LSWWordS

Proof

Step Hyp Ref Expression
1 fzval3 L0L=0..^L+1
2 1 feq2d LW:0LSW:0..^L+1S
3 iswrdi W:0..^L+1SWWordS
4 2 3 syl6bi LW:0LSWWordS
5 fzn0 0LL0
6 elnn0uz L0L0
7 5 6 sylbb2 0LL0
8 7 nn0zd 0LL
9 8 necon1bi ¬L0L=
10 9 feq2d ¬LW:0LSW:S
11 iswrddm0 W:SWWordS
12 10 11 syl6bi ¬LW:0LSWWordS
13 4 12 pm2.61i W:0LSWWordS