Metamath Proof Explorer


Theorem fgreu

Description: Exactly one point of a function's graph has a given first element. (Contributed by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Assertion fgreu FunFXdomF∃!pFX=1stp

Proof

Step Hyp Ref Expression
1 funfvop FunFXdomFXFXF
2 simplll FunFXdomFpFX=1stpFunF
3 funrel FunFRelF
4 2 3 syl FunFXdomFpFX=1stpRelF
5 simplr FunFXdomFpFX=1stppF
6 1st2nd RelFpFp=1stp2ndp
7 4 5 6 syl2anc FunFXdomFpFX=1stpp=1stp2ndp
8 simpr FunFXdomFpFX=1stpX=1stp
9 simpllr FunFXdomFpFX=1stpXdomF
10 8 opeq1d FunFXdomFpFX=1stpX2ndp=1stp2ndp
11 7 10 eqtr4d FunFXdomFpFX=1stpp=X2ndp
12 11 5 eqeltrrd FunFXdomFpFX=1stpX2ndpF
13 funopfvb FunFXdomFFX=2ndpX2ndpF
14 13 biimpar FunFXdomFX2ndpFFX=2ndp
15 2 9 12 14 syl21anc FunFXdomFpFX=1stpFX=2ndp
16 8 15 opeq12d FunFXdomFpFX=1stpXFX=1stp2ndp
17 7 16 eqtr4d FunFXdomFpFX=1stpp=XFX
18 simpr FunFXdomFpFp=XFXp=XFX
19 18 fveq2d FunFXdomFpFp=XFX1stp=1stXFX
20 fvex FXV
21 op1stg XdomFFXV1stXFX=X
22 20 21 mpan2 XdomF1stXFX=X
23 22 ad3antlr FunFXdomFpFp=XFX1stXFX=X
24 19 23 eqtr2d FunFXdomFpFp=XFXX=1stp
25 17 24 impbida FunFXdomFpFX=1stpp=XFX
26 25 ralrimiva FunFXdomFpFX=1stpp=XFX
27 eqeq2 q=XFXp=qp=XFX
28 27 bibi2d q=XFXX=1stpp=qX=1stpp=XFX
29 28 ralbidv q=XFXpFX=1stpp=qpFX=1stpp=XFX
30 29 rspcev XFXFpFX=1stpp=XFXqFpFX=1stpp=q
31 1 26 30 syl2anc FunFXdomFqFpFX=1stpp=q
32 reu6 ∃!pFX=1stpqFpFX=1stpp=q
33 31 32 sylibr FunFXdomF∃!pFX=1stp