Metamath Proof Explorer


Theorem fgreu

Description: Exactly one point of a function's graph has a given first element. (Contributed by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Assertion fgreu Fun F X dom F ∃! p F X = 1 st p

Proof

Step Hyp Ref Expression
1 funfvop Fun F X dom F X F X F
2 simplll Fun F X dom F p F X = 1 st p Fun F
3 funrel Fun F Rel F
4 2 3 syl Fun F X dom F p F X = 1 st p Rel F
5 simplr Fun F X dom F p F X = 1 st p p F
6 1st2nd Rel F p F p = 1 st p 2 nd p
7 4 5 6 syl2anc Fun F X dom F p F X = 1 st p p = 1 st p 2 nd p
8 simpr Fun F X dom F p F X = 1 st p X = 1 st p
9 simpllr Fun F X dom F p F X = 1 st p X dom F
10 8 opeq1d Fun F X dom F p F X = 1 st p X 2 nd p = 1 st p 2 nd p
11 7 10 eqtr4d Fun F X dom F p F X = 1 st p p = X 2 nd p
12 11 5 eqeltrrd Fun F X dom F p F X = 1 st p X 2 nd p F
13 funopfvb Fun F X dom F F X = 2 nd p X 2 nd p F
14 13 biimpar Fun F X dom F X 2 nd p F F X = 2 nd p
15 2 9 12 14 syl21anc Fun F X dom F p F X = 1 st p F X = 2 nd p
16 8 15 opeq12d Fun F X dom F p F X = 1 st p X F X = 1 st p 2 nd p
17 7 16 eqtr4d Fun F X dom F p F X = 1 st p p = X F X
18 simpr Fun F X dom F p F p = X F X p = X F X
19 18 fveq2d Fun F X dom F p F p = X F X 1 st p = 1 st X F X
20 fvex F X V
21 op1stg X dom F F X V 1 st X F X = X
22 20 21 mpan2 X dom F 1 st X F X = X
23 22 ad3antlr Fun F X dom F p F p = X F X 1 st X F X = X
24 19 23 eqtr2d Fun F X dom F p F p = X F X X = 1 st p
25 17 24 impbida Fun F X dom F p F X = 1 st p p = X F X
26 25 ralrimiva Fun F X dom F p F X = 1 st p p = X F X
27 eqeq2 q = X F X p = q p = X F X
28 27 bibi2d q = X F X X = 1 st p p = q X = 1 st p p = X F X
29 28 ralbidv q = X F X p F X = 1 st p p = q p F X = 1 st p p = X F X
30 29 rspcev X F X F p F X = 1 st p p = X F X q F p F X = 1 st p p = q
31 1 26 30 syl2anc Fun F X dom F q F p F X = 1 st p p = q
32 reu6 ∃! p F X = 1 st p q F p F X = 1 st p p = q
33 31 32 sylibr Fun F X dom F ∃! p F X = 1 st p