| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-rn |
|
| 2 |
1
|
eleq2i |
|
| 3 |
|
fgreu |
|
| 4 |
3
|
adantll |
|
| 5 |
2 4
|
sylan2b |
|
| 6 |
|
cnvcnvss |
|
| 7 |
|
cnvssrndm |
|
| 8 |
7
|
sseli |
|
| 9 |
|
dfdm4 |
|
| 10 |
1 9
|
xpeq12i |
|
| 11 |
8 10
|
eleqtrdi |
|
| 12 |
|
2nd1st |
|
| 13 |
11 12
|
syl |
|
| 14 |
13
|
eqcomd |
|
| 15 |
|
relcnv |
|
| 16 |
|
cnvf1olem |
|
| 17 |
16
|
simpld |
|
| 18 |
15 17
|
mpan |
|
| 19 |
14 18
|
mpdan |
|
| 20 |
6 19
|
sselid |
|
| 21 |
20
|
adantl |
|
| 22 |
|
simpll |
|
| 23 |
|
simpr |
|
| 24 |
|
relssdmrn |
|
| 25 |
24
|
adantr |
|
| 26 |
25
|
sselda |
|
| 27 |
|
2nd1st |
|
| 28 |
26 27
|
syl |
|
| 29 |
28
|
eqcomd |
|
| 30 |
|
cnvf1olem |
|
| 31 |
30
|
simpld |
|
| 32 |
22 23 29 31
|
syl12anc |
|
| 33 |
15
|
a1i |
|
| 34 |
|
simplr |
|
| 35 |
14
|
ad2antlr |
|
| 36 |
16
|
simprd |
|
| 37 |
33 34 35 36
|
syl12anc |
|
| 38 |
|
simpr |
|
| 39 |
38
|
sneqd |
|
| 40 |
39
|
cnveqd |
|
| 41 |
40
|
unieqd |
|
| 42 |
28
|
ad2antrr |
|
| 43 |
37 41 42
|
3eqtr2d |
|
| 44 |
30
|
simprd |
|
| 45 |
22 23 29 44
|
syl12anc |
|
| 46 |
45
|
ad2antrr |
|
| 47 |
|
simpr |
|
| 48 |
47
|
sneqd |
|
| 49 |
48
|
cnveqd |
|
| 50 |
49
|
unieqd |
|
| 51 |
13
|
ad2antlr |
|
| 52 |
46 50 51
|
3eqtr2d |
|
| 53 |
43 52
|
impbida |
|
| 54 |
53
|
ralrimiva |
|
| 55 |
|
eqeq2 |
|
| 56 |
55
|
bibi2d |
|
| 57 |
56
|
ralbidv |
|
| 58 |
57
|
rspcev |
|
| 59 |
32 54 58
|
syl2anc |
|
| 60 |
|
reu6 |
|
| 61 |
59 60
|
sylibr |
|
| 62 |
|
fvex |
|
| 63 |
|
fvex |
|
| 64 |
62 63
|
op2ndd |
|
| 65 |
64
|
eqeq2d |
|
| 66 |
65
|
adantl |
|
| 67 |
21 61 66
|
reuxfr1d |
|
| 68 |
67
|
adantr |
|
| 69 |
5 68
|
mpbird |
|