Metamath Proof Explorer


Theorem fiinfcl

Description: A nonempty finite set contains its infimum. (Contributed by AV, 3-Sep-2020)

Ref Expression
Assertion fiinfcl ROrABFinBBAsupBARB

Proof

Step Hyp Ref Expression
1 df-inf supBAR=supBAR-1
2 cnvso ROrAR-1OrA
3 fisupcl R-1OrABFinBBAsupBAR-1B
4 2 3 sylanb ROrABFinBBAsupBAR-1B
5 1 4 eqeltrid ROrABFinBBAsupBARB