Metamath Proof Explorer


Theorem infltoreq

Description: The infimum of a finite set is less than or equal to all the elements of the set. (Contributed by AV, 4-Sep-2020)

Ref Expression
Hypotheses infltoreq.1 φ R Or A
infltoreq.2 φ B A
infltoreq.3 φ B Fin
infltoreq.4 φ C B
infltoreq.5 φ S = sup B A R
Assertion infltoreq φ S R C C = S

Proof

Step Hyp Ref Expression
1 infltoreq.1 φ R Or A
2 infltoreq.2 φ B A
3 infltoreq.3 φ B Fin
4 infltoreq.4 φ C B
5 infltoreq.5 φ S = sup B A R
6 cnvso R Or A R -1 Or A
7 1 6 sylib φ R -1 Or A
8 df-inf sup B A R = sup B A R -1
9 5 8 eqtrdi φ S = sup B A R -1
10 7 2 3 4 9 supgtoreq φ C R -1 S C = S
11 4 ne0d φ B
12 fiinfcl R Or A B Fin B B A sup B A R B
13 1 3 11 2 12 syl13anc φ sup B A R B
14 5 13 eqeltrd φ S B
15 brcnvg C B S B C R -1 S S R C
16 15 bicomd C B S B S R C C R -1 S
17 4 14 16 syl2anc φ S R C C R -1 S
18 17 orbi1d φ S R C C = S C R -1 S C = S
19 10 18 mpbird φ S R C C = S