Metamath Proof Explorer


Theorem infltoreq

Description: The infimum of a finite set is less than or equal to all the elements of the set. (Contributed by AV, 4-Sep-2020)

Ref Expression
Hypotheses infltoreq.1 φROrA
infltoreq.2 φBA
infltoreq.3 φBFin
infltoreq.4 φCB
infltoreq.5 φS=supBAR
Assertion infltoreq φSRCC=S

Proof

Step Hyp Ref Expression
1 infltoreq.1 φROrA
2 infltoreq.2 φBA
3 infltoreq.3 φBFin
4 infltoreq.4 φCB
5 infltoreq.5 φS=supBAR
6 cnvso ROrAR-1OrA
7 1 6 sylib φR-1OrA
8 df-inf supBAR=supBAR-1
9 5 8 eqtrdi φS=supBAR-1
10 7 2 3 4 9 supgtoreq φCR-1SC=S
11 4 ne0d φB
12 fiinfcl ROrABFinBBAsupBARB
13 1 3 11 2 12 syl13anc φsupBARB
14 5 13 eqeltrd φSB
15 brcnvg CBSBCR-1SSRC
16 15 bicomd CBSBSRCCR-1S
17 4 14 16 syl2anc φSRCCR-1S
18 17 orbi1d φSRCC=SCR-1SC=S
19 10 18 mpbird φSRCC=S