Metamath Proof Explorer


Theorem supgtoreq

Description: The supremum of a finite set is greater than or equal to all the elements of the set. (Contributed by AV, 1-Oct-2019)

Ref Expression
Hypotheses supgtoreq.1 φROrA
supgtoreq.2 φBA
supgtoreq.3 φBFin
supgtoreq.4 φCB
supgtoreq.5 φS=supBAR
Assertion supgtoreq φCRSC=S

Proof

Step Hyp Ref Expression
1 supgtoreq.1 φROrA
2 supgtoreq.2 φBA
3 supgtoreq.3 φBFin
4 supgtoreq.4 φCB
5 supgtoreq.5 φS=supBAR
6 4 ne0d φB
7 fisup2g ROrABFinBBAxByB¬xRyyAyRxzByRz
8 1 3 6 2 7 syl13anc φxByB¬xRyyAyRxzByRz
9 ssrexv BAxByB¬xRyyAyRxzByRzxAyB¬xRyyAyRxzByRz
10 2 8 9 sylc φxAyB¬xRyyAyRxzByRz
11 1 10 supub φCB¬supBARRC
12 4 11 mpd φ¬supBARRC
13 5 12 eqnbrtrd φ¬SRC
14 fisupcl ROrABFinBBAsupBARB
15 1 3 6 2 14 syl13anc φsupBARB
16 2 15 sseldd φsupBARA
17 5 16 eqeltrd φSA
18 2 4 sseldd φCA
19 sotric ROrASACASRC¬S=CCRS
20 1 17 18 19 syl12anc φSRC¬S=CCRS
21 orcom S=CCRSCRSS=C
22 eqcom S=CC=S
23 22 orbi2i CRSS=CCRSC=S
24 21 23 bitri S=CCRSCRSC=S
25 24 notbii ¬S=CCRS¬CRSC=S
26 20 25 bitr2di φ¬CRSC=SSRC
27 13 26 mtbird φ¬¬CRSC=S
28 27 notnotrd φCRSC=S