Metamath Proof Explorer


Theorem infltoreq

Description: The infimum of a finite set is less than or equal to all the elements of the set. (Contributed by AV, 4-Sep-2020)

Ref Expression
Hypotheses infltoreq.1 ( 𝜑𝑅 Or 𝐴 )
infltoreq.2 ( 𝜑𝐵𝐴 )
infltoreq.3 ( 𝜑𝐵 ∈ Fin )
infltoreq.4 ( 𝜑𝐶𝐵 )
infltoreq.5 ( 𝜑𝑆 = inf ( 𝐵 , 𝐴 , 𝑅 ) )
Assertion infltoreq ( 𝜑 → ( 𝑆 𝑅 𝐶𝐶 = 𝑆 ) )

Proof

Step Hyp Ref Expression
1 infltoreq.1 ( 𝜑𝑅 Or 𝐴 )
2 infltoreq.2 ( 𝜑𝐵𝐴 )
3 infltoreq.3 ( 𝜑𝐵 ∈ Fin )
4 infltoreq.4 ( 𝜑𝐶𝐵 )
5 infltoreq.5 ( 𝜑𝑆 = inf ( 𝐵 , 𝐴 , 𝑅 ) )
6 cnvso ( 𝑅 Or 𝐴 𝑅 Or 𝐴 )
7 1 6 sylib ( 𝜑 𝑅 Or 𝐴 )
8 df-inf inf ( 𝐵 , 𝐴 , 𝑅 ) = sup ( 𝐵 , 𝐴 , 𝑅 )
9 5 8 eqtrdi ( 𝜑𝑆 = sup ( 𝐵 , 𝐴 , 𝑅 ) )
10 7 2 3 4 9 supgtoreq ( 𝜑 → ( 𝐶 𝑅 𝑆𝐶 = 𝑆 ) )
11 4 ne0d ( 𝜑𝐵 ≠ ∅ )
12 fiinfcl ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵𝐴 ) ) → inf ( 𝐵 , 𝐴 , 𝑅 ) ∈ 𝐵 )
13 1 3 11 2 12 syl13anc ( 𝜑 → inf ( 𝐵 , 𝐴 , 𝑅 ) ∈ 𝐵 )
14 5 13 eqeltrd ( 𝜑𝑆𝐵 )
15 brcnvg ( ( 𝐶𝐵𝑆𝐵 ) → ( 𝐶 𝑅 𝑆𝑆 𝑅 𝐶 ) )
16 15 bicomd ( ( 𝐶𝐵𝑆𝐵 ) → ( 𝑆 𝑅 𝐶𝐶 𝑅 𝑆 ) )
17 4 14 16 syl2anc ( 𝜑 → ( 𝑆 𝑅 𝐶𝐶 𝑅 𝑆 ) )
18 17 orbi1d ( 𝜑 → ( ( 𝑆 𝑅 𝐶𝐶 = 𝑆 ) ↔ ( 𝐶 𝑅 𝑆𝐶 = 𝑆 ) ) )
19 10 18 mpbird ( 𝜑 → ( 𝑆 𝑅 𝐶𝐶 = 𝑆 ) )