| Step |
Hyp |
Ref |
Expression |
| 1 |
|
infltoreq.1 |
|- ( ph -> R Or A ) |
| 2 |
|
infltoreq.2 |
|- ( ph -> B C_ A ) |
| 3 |
|
infltoreq.3 |
|- ( ph -> B e. Fin ) |
| 4 |
|
infltoreq.4 |
|- ( ph -> C e. B ) |
| 5 |
|
infltoreq.5 |
|- ( ph -> S = inf ( B , A , R ) ) |
| 6 |
|
cnvso |
|- ( R Or A <-> `' R Or A ) |
| 7 |
1 6
|
sylib |
|- ( ph -> `' R Or A ) |
| 8 |
|
df-inf |
|- inf ( B , A , R ) = sup ( B , A , `' R ) |
| 9 |
5 8
|
eqtrdi |
|- ( ph -> S = sup ( B , A , `' R ) ) |
| 10 |
7 2 3 4 9
|
supgtoreq |
|- ( ph -> ( C `' R S \/ C = S ) ) |
| 11 |
4
|
ne0d |
|- ( ph -> B =/= (/) ) |
| 12 |
|
fiinfcl |
|- ( ( R Or A /\ ( B e. Fin /\ B =/= (/) /\ B C_ A ) ) -> inf ( B , A , R ) e. B ) |
| 13 |
1 3 11 2 12
|
syl13anc |
|- ( ph -> inf ( B , A , R ) e. B ) |
| 14 |
5 13
|
eqeltrd |
|- ( ph -> S e. B ) |
| 15 |
|
brcnvg |
|- ( ( C e. B /\ S e. B ) -> ( C `' R S <-> S R C ) ) |
| 16 |
15
|
bicomd |
|- ( ( C e. B /\ S e. B ) -> ( S R C <-> C `' R S ) ) |
| 17 |
4 14 16
|
syl2anc |
|- ( ph -> ( S R C <-> C `' R S ) ) |
| 18 |
17
|
orbi1d |
|- ( ph -> ( ( S R C \/ C = S ) <-> ( C `' R S \/ C = S ) ) ) |
| 19 |
10 18
|
mpbird |
|- ( ph -> ( S R C \/ C = S ) ) |