Metamath Proof Explorer


Theorem fin23lem12

Description: The beginning of the proof that every II-finite set (every chain of subsets has a maximal element) is III-finite (has no denumerable collection of subsets).

This first section is dedicated to the construction of U and its intersection. First, the value of U at a successor. (Contributed by Stefan O'Rear, 1-Nov-2014)

Ref Expression
Hypothesis fin23lem.a U = seq ω i ω , u V if t i u = u t i u ran t
Assertion fin23lem12 A ω U suc A = if t A U A = U A t A U A

Proof

Step Hyp Ref Expression
1 fin23lem.a U = seq ω i ω , u V if t i u = u t i u ran t
2 1 seqomsuc A ω U suc A = A i ω , u V if t i u = u t i u U A
3 fvex U A V
4 fveq2 i = A t i = t A
5 4 ineq1d i = A t i u = t A u
6 5 eqeq1d i = A t i u = t A u =
7 6 5 ifbieq2d i = A if t i u = u t i u = if t A u = u t A u
8 ineq2 u = U A t A u = t A U A
9 8 eqeq1d u = U A t A u = t A U A =
10 id u = U A u = U A
11 9 10 8 ifbieq12d u = U A if t A u = u t A u = if t A U A = U A t A U A
12 eqid i ω , u V if t i u = u t i u = i ω , u V if t i u = u t i u
13 3 inex2 t A U A V
14 3 13 ifex if t A U A = U A t A U A V
15 7 11 12 14 ovmpo A ω U A V A i ω , u V if t i u = u t i u U A = if t A U A = U A t A U A
16 3 15 mpan2 A ω A i ω , u V if t i u = u t i u U A = if t A U A = U A t A U A
17 2 16 eqtrd A ω U suc A = if t A U A = U A t A U A