Metamath Proof Explorer


Theorem fin4i

Description: Infer that a set is IV-infinite. (Contributed by Stefan O'Rear, 16-May-2015)

Ref Expression
Assertion fin4i XAXA¬AFinIV

Proof

Step Hyp Ref Expression
1 isfin4 AFinIVAFinIV¬xxAxA
2 1 ibi AFinIV¬xxAxA
3 relen Rel
4 3 brrelex1i XAXV
5 4 adantl XAXAXV
6 psseq1 x=XxAXA
7 breq1 x=XxAXA
8 6 7 anbi12d x=XxAxAXAXA
9 8 spcegv XVXAXAxxAxA
10 5 9 mpcom XAXAxxAxA
11 2 10 nsyl3 XAXA¬AFinIV