Metamath Proof Explorer


Theorem fincygsubgd

Description: The subgroup referenced in fincygsubgodd is a subgroup. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses fincygsubgd.1 B = Base G
fincygsubgd.2 · ˙ = G
fincygsubgd.3 H = n n · ˙ C · ˙ A
fincygsubgd.4 φ G Grp
fincygsubgd.5 φ A B
fincygsubgd.6 φ C
Assertion fincygsubgd φ ran H SubGrp G

Proof

Step Hyp Ref Expression
1 fincygsubgd.1 B = Base G
2 fincygsubgd.2 · ˙ = G
3 fincygsubgd.3 H = n n · ˙ C · ˙ A
4 fincygsubgd.4 φ G Grp
5 fincygsubgd.5 φ A B
6 fincygsubgd.6 φ C
7 6 nnzd φ C
8 1 2 4 7 5 mulgcld φ C · ˙ A B
9 1 2 3 4 8 cycsubgcld φ ran H SubGrp G