Metamath Proof Explorer


Theorem findOLD

Description: Obsolete version of find as of 28-May-2024. (Contributed by NM, 22-Feb-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis find.1 AωAxAsucxA
Assertion findOLD A=ω

Proof

Step Hyp Ref Expression
1 find.1 AωAxAsucxA
2 1 simp1i Aω
3 3simpc AωAxAsucxAAxAsucxA
4 1 3 ax-mp AxAsucxA
5 df-ral xAsucxAxxAsucxA
6 alral xxAsucxAxωxAsucxA
7 5 6 sylbi xAsucxAxωxAsucxA
8 7 anim2i AxAsucxAAxωxAsucxA
9 4 8 ax-mp AxωxAsucxA
10 peano5 AxωxAsucxAωA
11 9 10 ax-mp ωA
12 2 11 eqssi A=ω