Metamath Proof Explorer


Theorem fineqv

Description: If the Axiom of Infinity is denied, then all sets are finite (which implies the Axiom of Choice). (Contributed by Mario Carneiro, 20-Jan-2013) (Revised by Mario Carneiro, 3-Jan-2015)

Ref Expression
Assertion fineqv ¬ωVFin=V

Proof

Step Hyp Ref Expression
1 ssv FinV
2 1 a1i ¬ωVFinV
3 vex aV
4 fineqvlem aV¬aFinω𝒫𝒫a
5 3 4 mpan ¬aFinω𝒫𝒫a
6 reldom Rel
7 6 brrelex1i ω𝒫𝒫aωV
8 5 7 syl ¬aFinωV
9 8 con1i ¬ωVaFin
10 9 a1d ¬ωVaVaFin
11 10 ssrdv ¬ωVVFin
12 2 11 eqssd ¬ωVFin=V
13 ominf ¬ωFin
14 eleq2 Fin=VωFinωV
15 13 14 mtbii Fin=V¬ωV
16 12 15 impbii ¬ωVFin=V