Description: Lemma for fineqv . (Contributed by Mario Carneiro, 20-Jan-2013) (Proof shortened by Stefan O'Rear, 3-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | fineqvlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexg | |
|
2 | 1 | adantr | |
3 | 2 | pwexd | |
4 | ssrab2 | |
|
5 | elpw2g | |
|
6 | 2 5 | syl | |
7 | 4 6 | mpbiri | |
8 | 7 | a1d | |
9 | isinf | |
|
10 | 9 | r19.21bi | |
11 | 10 | ad2ant2lr | |
12 | velpw | |
|
13 | 12 | biimpri | |
14 | 13 | anim1i | |
15 | breq1 | |
|
16 | 15 | elrab | |
17 | 14 16 | sylibr | |
18 | 17 | eximi | |
19 | 11 18 | syl | |
20 | eleq2 | |
|
21 | 20 | biimpcd | |
22 | 21 | adantl | |
23 | 16 | simprbi | |
24 | breq1 | |
|
25 | 24 | elrab | |
26 | 25 | simprbi | |
27 | ensym | |
|
28 | entr | |
|
29 | 27 28 | sylan | |
30 | 23 26 29 | syl2an | |
31 | 30 | ex | |
32 | 31 | adantl | |
33 | nneneq | |
|
34 | 33 | biimpd | |
35 | 34 | ad2antlr | |
36 | 22 32 35 | 3syld | |
37 | 19 36 | exlimddv | |
38 | breq2 | |
|
39 | 38 | rabbidv | |
40 | 37 39 | impbid1 | |
41 | 40 | ex | |
42 | 8 41 | dom2d | |
43 | 3 42 | mpd | |