Metamath Proof Explorer


Theorem fineqvlem

Description: Lemma for fineqv . (Contributed by Mario Carneiro, 20-Jan-2013) (Proof shortened by Stefan O'Rear, 3-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion fineqvlem AV¬AFinω𝒫𝒫A

Proof

Step Hyp Ref Expression
1 pwexg AV𝒫AV
2 1 adantr AV¬AFin𝒫AV
3 2 pwexd AV¬AFin𝒫𝒫AV
4 ssrab2 d𝒫A|db𝒫A
5 elpw2g 𝒫AVd𝒫A|db𝒫𝒫Ad𝒫A|db𝒫A
6 2 5 syl AV¬AFind𝒫A|db𝒫𝒫Ad𝒫A|db𝒫A
7 4 6 mpbiri AV¬AFind𝒫A|db𝒫𝒫A
8 7 a1d AV¬AFinbωd𝒫A|db𝒫𝒫A
9 isinf ¬AFinbωeeAeb
10 9 r19.21bi ¬AFinbωeeAeb
11 10 ad2ant2lr AV¬AFinbωcωeeAeb
12 velpw e𝒫AeA
13 12 biimpri eAe𝒫A
14 13 anim1i eAebe𝒫Aeb
15 breq1 d=edbeb
16 15 elrab ed𝒫A|dbe𝒫Aeb
17 14 16 sylibr eAebed𝒫A|db
18 17 eximi eeAebeed𝒫A|db
19 11 18 syl AV¬AFinbωcωeed𝒫A|db
20 eleq2 d𝒫A|db=d𝒫A|dced𝒫A|dbed𝒫A|dc
21 20 biimpcd ed𝒫A|dbd𝒫A|db=d𝒫A|dced𝒫A|dc
22 21 adantl AV¬AFinbωcωed𝒫A|dbd𝒫A|db=d𝒫A|dced𝒫A|dc
23 16 simprbi ed𝒫A|dbeb
24 breq1 d=edcec
25 24 elrab ed𝒫A|dce𝒫Aec
26 25 simprbi ed𝒫A|dcec
27 ensym ebbe
28 entr beecbc
29 27 28 sylan ebecbc
30 23 26 29 syl2an ed𝒫A|dbed𝒫A|dcbc
31 30 ex ed𝒫A|dbed𝒫A|dcbc
32 31 adantl AV¬AFinbωcωed𝒫A|dbed𝒫A|dcbc
33 nneneq bωcωbcb=c
34 33 biimpd bωcωbcb=c
35 34 ad2antlr AV¬AFinbωcωed𝒫A|dbbcb=c
36 22 32 35 3syld AV¬AFinbωcωed𝒫A|dbd𝒫A|db=d𝒫A|dcb=c
37 19 36 exlimddv AV¬AFinbωcωd𝒫A|db=d𝒫A|dcb=c
38 breq2 b=cdbdc
39 38 rabbidv b=cd𝒫A|db=d𝒫A|dc
40 37 39 impbid1 AV¬AFinbωcωd𝒫A|db=d𝒫A|dcb=c
41 40 ex AV¬AFinbωcωd𝒫A|db=d𝒫A|dcb=c
42 8 41 dom2d AV¬AFin𝒫𝒫AVω𝒫𝒫A
43 3 42 mpd AV¬AFinω𝒫𝒫A