Metamath Proof Explorer


Theorem fineqvr1ombregs

Description: All sets are finite iff all sets are hereditarily finite. (Contributed by BTernaryTau, 30-Dec-2025)

Ref Expression
Assertion fineqvr1ombregs Fin = V R1 ω = V

Proof

Step Hyp Ref Expression
1 fineqvomon Fin = V ω = On
2 1 imaeq2d Fin = V R1 ω = R1 On
3 2 unieqd Fin = V R1 ω = R1 On
4 unir1regs R1 On = V
5 3 4 eqtrdi Fin = V R1 ω = V
6 r1omfi R1 ω Fin
7 sseq1 R1 ω = V R1 ω Fin V Fin
8 6 7 mpbii R1 ω = V V Fin
9 vss V Fin Fin = V
10 8 9 sylib R1 ω = V Fin = V
11 5 10 impbii Fin = V R1 ω = V