| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fineqvomon |
|- ( Fin = _V -> _om = On ) |
| 2 |
1
|
imaeq2d |
|- ( Fin = _V -> ( R1 " _om ) = ( R1 " On ) ) |
| 3 |
2
|
unieqd |
|- ( Fin = _V -> U. ( R1 " _om ) = U. ( R1 " On ) ) |
| 4 |
|
unir1regs |
|- U. ( R1 " On ) = _V |
| 5 |
3 4
|
eqtrdi |
|- ( Fin = _V -> U. ( R1 " _om ) = _V ) |
| 6 |
|
r1omfi |
|- U. ( R1 " _om ) C_ Fin |
| 7 |
|
sseq1 |
|- ( U. ( R1 " _om ) = _V -> ( U. ( R1 " _om ) C_ Fin <-> _V C_ Fin ) ) |
| 8 |
6 7
|
mpbii |
|- ( U. ( R1 " _om ) = _V -> _V C_ Fin ) |
| 9 |
|
vss |
|- ( _V C_ Fin <-> Fin = _V ) |
| 10 |
8 9
|
sylib |
|- ( U. ( R1 " _om ) = _V -> Fin = _V ) |
| 11 |
5 10
|
impbii |
|- ( Fin = _V <-> U. ( R1 " _om ) = _V ) |