Metamath Proof Explorer


Theorem fineqvr1ombregs

Description: All sets are finite iff all sets are hereditarily finite. (Contributed by BTernaryTau, 30-Dec-2025)

Ref Expression
Assertion fineqvr1ombregs ( Fin = V ↔ ( 𝑅1 “ ω ) = V )

Proof

Step Hyp Ref Expression
1 fineqvomon ( Fin = V → ω = On )
2 1 imaeq2d ( Fin = V → ( 𝑅1 “ ω ) = ( 𝑅1 “ On ) )
3 2 unieqd ( Fin = V → ( 𝑅1 “ ω ) = ( 𝑅1 “ On ) )
4 unir1regs ( 𝑅1 “ On ) = V
5 3 4 eqtrdi ( Fin = V → ( 𝑅1 “ ω ) = V )
6 r1omfi ( 𝑅1 “ ω ) ⊆ Fin
7 sseq1 ( ( 𝑅1 “ ω ) = V → ( ( 𝑅1 “ ω ) ⊆ Fin ↔ V ⊆ Fin ) )
8 6 7 mpbii ( ( 𝑅1 “ ω ) = V → V ⊆ Fin )
9 vss ( V ⊆ Fin ↔ Fin = V )
10 8 9 sylib ( ( 𝑅1 “ ω ) = V → Fin = V )
11 5 10 impbii ( Fin = V ↔ ( 𝑅1 “ ω ) = V )