| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fineqvomon |
⊢ ( Fin = V → ω = On ) |
| 2 |
1
|
imaeq2d |
⊢ ( Fin = V → ( 𝑅1 “ ω ) = ( 𝑅1 “ On ) ) |
| 3 |
2
|
unieqd |
⊢ ( Fin = V → ∪ ( 𝑅1 “ ω ) = ∪ ( 𝑅1 “ On ) ) |
| 4 |
|
unir1regs |
⊢ ∪ ( 𝑅1 “ On ) = V |
| 5 |
3 4
|
eqtrdi |
⊢ ( Fin = V → ∪ ( 𝑅1 “ ω ) = V ) |
| 6 |
|
r1omfi |
⊢ ∪ ( 𝑅1 “ ω ) ⊆ Fin |
| 7 |
|
sseq1 |
⊢ ( ∪ ( 𝑅1 “ ω ) = V → ( ∪ ( 𝑅1 “ ω ) ⊆ Fin ↔ V ⊆ Fin ) ) |
| 8 |
6 7
|
mpbii |
⊢ ( ∪ ( 𝑅1 “ ω ) = V → V ⊆ Fin ) |
| 9 |
|
vss |
⊢ ( V ⊆ Fin ↔ Fin = V ) |
| 10 |
8 9
|
sylib |
⊢ ( ∪ ( 𝑅1 “ ω ) = V → Fin = V ) |
| 11 |
5 10
|
impbii |
⊢ ( Fin = V ↔ ∪ ( 𝑅1 “ ω ) = V ) |