| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r1funlim |
⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) |
| 2 |
1
|
simpli |
⊢ Fun 𝑅1 |
| 3 |
|
eluniima |
⊢ ( Fun 𝑅1 → ( 𝑥 ∈ ∪ ( 𝑅1 “ ω ) ↔ ∃ 𝑦 ∈ ω 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 4 |
2 3
|
ax-mp |
⊢ ( 𝑥 ∈ ∪ ( 𝑅1 “ ω ) ↔ ∃ 𝑦 ∈ ω 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) |
| 5 |
|
r1fin |
⊢ ( 𝑦 ∈ ω → ( 𝑅1 ‘ 𝑦 ) ∈ Fin ) |
| 6 |
|
r1pwss |
⊢ ( 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) → 𝒫 𝑥 ⊆ ( 𝑅1 ‘ 𝑦 ) ) |
| 7 |
|
ssfi |
⊢ ( ( ( 𝑅1 ‘ 𝑦 ) ∈ Fin ∧ 𝒫 𝑥 ⊆ ( 𝑅1 ‘ 𝑦 ) ) → 𝒫 𝑥 ∈ Fin ) |
| 8 |
5 6 7
|
syl2an |
⊢ ( ( 𝑦 ∈ ω ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) → 𝒫 𝑥 ∈ Fin ) |
| 9 |
8
|
rexlimiva |
⊢ ( ∃ 𝑦 ∈ ω 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) → 𝒫 𝑥 ∈ Fin ) |
| 10 |
|
pwfir |
⊢ ( 𝒫 𝑥 ∈ Fin → 𝑥 ∈ Fin ) |
| 11 |
9 10
|
syl |
⊢ ( ∃ 𝑦 ∈ ω 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) → 𝑥 ∈ Fin ) |
| 12 |
4 11
|
sylbi |
⊢ ( 𝑥 ∈ ∪ ( 𝑅1 “ ω ) → 𝑥 ∈ Fin ) |
| 13 |
12
|
ssriv |
⊢ ∪ ( 𝑅1 “ ω ) ⊆ Fin |