Metamath Proof Explorer


Theorem r1omfi

Description: Hereditarily finite sets are finite sets. (Contributed by BTernaryTau, 30-Dec-2025)

Ref Expression
Assertion r1omfi ( 𝑅1 “ ω ) ⊆ Fin

Proof

Step Hyp Ref Expression
1 r1funlim ( Fun 𝑅1 ∧ Lim dom 𝑅1 )
2 1 simpli Fun 𝑅1
3 eluniima ( Fun 𝑅1 → ( 𝑥 ( 𝑅1 “ ω ) ↔ ∃ 𝑦 ∈ ω 𝑥 ∈ ( 𝑅1𝑦 ) ) )
4 2 3 ax-mp ( 𝑥 ( 𝑅1 “ ω ) ↔ ∃ 𝑦 ∈ ω 𝑥 ∈ ( 𝑅1𝑦 ) )
5 r1fin ( 𝑦 ∈ ω → ( 𝑅1𝑦 ) ∈ Fin )
6 r1pwss ( 𝑥 ∈ ( 𝑅1𝑦 ) → 𝒫 𝑥 ⊆ ( 𝑅1𝑦 ) )
7 ssfi ( ( ( 𝑅1𝑦 ) ∈ Fin ∧ 𝒫 𝑥 ⊆ ( 𝑅1𝑦 ) ) → 𝒫 𝑥 ∈ Fin )
8 5 6 7 syl2an ( ( 𝑦 ∈ ω ∧ 𝑥 ∈ ( 𝑅1𝑦 ) ) → 𝒫 𝑥 ∈ Fin )
9 8 rexlimiva ( ∃ 𝑦 ∈ ω 𝑥 ∈ ( 𝑅1𝑦 ) → 𝒫 𝑥 ∈ Fin )
10 pwfir ( 𝒫 𝑥 ∈ Fin → 𝑥 ∈ Fin )
11 9 10 syl ( ∃ 𝑦 ∈ ω 𝑥 ∈ ( 𝑅1𝑦 ) → 𝑥 ∈ Fin )
12 4 11 sylbi ( 𝑥 ( 𝑅1 “ ω ) → 𝑥 ∈ Fin )
13 12 ssriv ( 𝑅1 “ ω ) ⊆ Fin