| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r1omfi |
⊢ ∪ ( 𝑅1 “ ω ) ⊆ Fin |
| 2 |
1
|
sseli |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ ω ) → 𝐴 ∈ Fin ) |
| 3 |
|
r1funlim |
⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) |
| 4 |
3
|
simpli |
⊢ Fun 𝑅1 |
| 5 |
|
eluniima |
⊢ ( Fun 𝑅1 → ( 𝐴 ∈ ∪ ( 𝑅1 “ ω ) ↔ ∃ 𝑦 ∈ ω 𝐴 ∈ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 6 |
4 5
|
ax-mp |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ ω ) ↔ ∃ 𝑦 ∈ ω 𝐴 ∈ ( 𝑅1 ‘ 𝑦 ) ) |
| 7 |
|
r19.41v |
⊢ ( ∃ 𝑦 ∈ ω ( 𝐴 ∈ ( 𝑅1 ‘ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) ↔ ( ∃ 𝑦 ∈ ω 𝐴 ∈ ( 𝑅1 ‘ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) ) |
| 8 |
|
r1elcl |
⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) |
| 9 |
8
|
reximi |
⊢ ( ∃ 𝑦 ∈ ω ( 𝐴 ∈ ( 𝑅1 ‘ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ ω 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) |
| 10 |
7 9
|
sylbir |
⊢ ( ( ∃ 𝑦 ∈ ω 𝐴 ∈ ( 𝑅1 ‘ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ ω 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) |
| 11 |
6 10
|
sylanb |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ ω ) ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ ω 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) |
| 12 |
|
eluniima |
⊢ ( Fun 𝑅1 → ( 𝑥 ∈ ∪ ( 𝑅1 “ ω ) ↔ ∃ 𝑦 ∈ ω 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 13 |
4 12
|
ax-mp |
⊢ ( 𝑥 ∈ ∪ ( 𝑅1 “ ω ) ↔ ∃ 𝑦 ∈ ω 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) |
| 14 |
11 13
|
sylibr |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ ω ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ∪ ( 𝑅1 “ ω ) ) |
| 15 |
14
|
ralrimiva |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ ω ) → ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ∪ ( 𝑅1 “ ω ) ) |
| 16 |
2 15
|
jca |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ ω ) → ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ∪ ( 𝑅1 “ ω ) ) ) |
| 17 |
|
limom |
⊢ Lim ω |
| 18 |
|
r1filimi |
⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ∪ ( 𝑅1 “ ω ) ∧ Lim ω ) → 𝐴 ∈ ∪ ( 𝑅1 “ ω ) ) |
| 19 |
17 18
|
mp3an3 |
⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ∪ ( 𝑅1 “ ω ) ) → 𝐴 ∈ ∪ ( 𝑅1 “ ω ) ) |
| 20 |
16 19
|
impbii |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ ω ) ↔ ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ∪ ( 𝑅1 “ ω ) ) ) |