Metamath Proof Explorer


Theorem r1omhf

Description: A set is hereditarily finite iff it is finite and all of its elements are hereditarily finite. (Contributed by BTernaryTau, 19-Jan-2026)

Ref Expression
Assertion r1omhf ( 𝐴 ( 𝑅1 “ ω ) ↔ ( 𝐴 ∈ Fin ∧ ∀ 𝑥𝐴 𝑥 ( 𝑅1 “ ω ) ) )

Proof

Step Hyp Ref Expression
1 r1omfi ( 𝑅1 “ ω ) ⊆ Fin
2 1 sseli ( 𝐴 ( 𝑅1 “ ω ) → 𝐴 ∈ Fin )
3 r1funlim ( Fun 𝑅1 ∧ Lim dom 𝑅1 )
4 3 simpli Fun 𝑅1
5 eluniima ( Fun 𝑅1 → ( 𝐴 ( 𝑅1 “ ω ) ↔ ∃ 𝑦 ∈ ω 𝐴 ∈ ( 𝑅1𝑦 ) ) )
6 4 5 ax-mp ( 𝐴 ( 𝑅1 “ ω ) ↔ ∃ 𝑦 ∈ ω 𝐴 ∈ ( 𝑅1𝑦 ) )
7 r19.41v ( ∃ 𝑦 ∈ ω ( 𝐴 ∈ ( 𝑅1𝑦 ) ∧ 𝑥𝐴 ) ↔ ( ∃ 𝑦 ∈ ω 𝐴 ∈ ( 𝑅1𝑦 ) ∧ 𝑥𝐴 ) )
8 r1elcl ( ( 𝐴 ∈ ( 𝑅1𝑦 ) ∧ 𝑥𝐴 ) → 𝑥 ∈ ( 𝑅1𝑦 ) )
9 8 reximi ( ∃ 𝑦 ∈ ω ( 𝐴 ∈ ( 𝑅1𝑦 ) ∧ 𝑥𝐴 ) → ∃ 𝑦 ∈ ω 𝑥 ∈ ( 𝑅1𝑦 ) )
10 7 9 sylbir ( ( ∃ 𝑦 ∈ ω 𝐴 ∈ ( 𝑅1𝑦 ) ∧ 𝑥𝐴 ) → ∃ 𝑦 ∈ ω 𝑥 ∈ ( 𝑅1𝑦 ) )
11 6 10 sylanb ( ( 𝐴 ( 𝑅1 “ ω ) ∧ 𝑥𝐴 ) → ∃ 𝑦 ∈ ω 𝑥 ∈ ( 𝑅1𝑦 ) )
12 eluniima ( Fun 𝑅1 → ( 𝑥 ( 𝑅1 “ ω ) ↔ ∃ 𝑦 ∈ ω 𝑥 ∈ ( 𝑅1𝑦 ) ) )
13 4 12 ax-mp ( 𝑥 ( 𝑅1 “ ω ) ↔ ∃ 𝑦 ∈ ω 𝑥 ∈ ( 𝑅1𝑦 ) )
14 11 13 sylibr ( ( 𝐴 ( 𝑅1 “ ω ) ∧ 𝑥𝐴 ) → 𝑥 ( 𝑅1 “ ω ) )
15 14 ralrimiva ( 𝐴 ( 𝑅1 “ ω ) → ∀ 𝑥𝐴 𝑥 ( 𝑅1 “ ω ) )
16 2 15 jca ( 𝐴 ( 𝑅1 “ ω ) → ( 𝐴 ∈ Fin ∧ ∀ 𝑥𝐴 𝑥 ( 𝑅1 “ ω ) ) )
17 limom Lim ω
18 r1filimi ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥𝐴 𝑥 ( 𝑅1 “ ω ) ∧ Lim ω ) → 𝐴 ( 𝑅1 “ ω ) )
19 17 18 mp3an3 ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥𝐴 𝑥 ( 𝑅1 “ ω ) ) → 𝐴 ( 𝑅1 “ ω ) )
20 16 19 impbii ( 𝐴 ( 𝑅1 “ ω ) ↔ ( 𝐴 ∈ Fin ∧ ∀ 𝑥𝐴 𝑥 ( 𝑅1 “ ω ) ) )