Metamath Proof Explorer


Theorem r1filimi

Description: If all elements in a finite set appear in the cumulative hierarchy prior to a limit ordinal, then that set also appears in the cumulative hierarchy prior to the limit ordinal. (Contributed by BTernaryTau, 19-Jan-2026)

Ref Expression
Assertion r1filimi ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥𝐴 𝑥 ( 𝑅1𝐵 ) ∧ Lim 𝐵 ) → 𝐴 ( 𝑅1𝐵 ) )

Proof

Step Hyp Ref Expression
1 raleq ( 𝑎 = 𝐴 → ( ∀ 𝑥𝑎 𝑥 ( 𝑅1𝐵 ) ↔ ∀ 𝑥𝐴 𝑥 ( 𝑅1𝐵 ) ) )
2 eleq1 ( 𝑎 = 𝐴 → ( 𝑎 ( 𝑅1 “ On ) ↔ 𝐴 ( 𝑅1 “ On ) ) )
3 1 2 imbi12d ( 𝑎 = 𝐴 → ( ( ∀ 𝑥𝑎 𝑥 ( 𝑅1𝐵 ) → 𝑎 ( 𝑅1 “ On ) ) ↔ ( ∀ 𝑥𝐴 𝑥 ( 𝑅1𝐵 ) → 𝐴 ( 𝑅1 “ On ) ) ) )
4 3 imbi2d ( 𝑎 = 𝐴 → ( ( Lim 𝐵 → ( ∀ 𝑥𝑎 𝑥 ( 𝑅1𝐵 ) → 𝑎 ( 𝑅1 “ On ) ) ) ↔ ( Lim 𝐵 → ( ∀ 𝑥𝐴 𝑥 ( 𝑅1𝐵 ) → 𝐴 ( 𝑅1 “ On ) ) ) ) )
5 r1funlim ( Fun 𝑅1 ∧ Lim dom 𝑅1 )
6 5 simpli Fun 𝑅1
7 eluniima ( Fun 𝑅1 → ( 𝑥 ( 𝑅1𝐵 ) ↔ ∃ 𝑦𝐵 𝑥 ∈ ( 𝑅1𝑦 ) ) )
8 6 7 ax-mp ( 𝑥 ( 𝑅1𝐵 ) ↔ ∃ 𝑦𝐵 𝑥 ∈ ( 𝑅1𝑦 ) )
9 limord ( Lim 𝐵 → Ord 𝐵 )
10 ordsson ( Ord 𝐵𝐵 ⊆ On )
11 9 10 syl ( Lim 𝐵𝐵 ⊆ On )
12 11 sseld ( Lim 𝐵 → ( 𝑦𝐵𝑦 ∈ On ) )
13 12 anim1d ( Lim 𝐵 → ( ( 𝑦𝐵𝑥 ∈ ( 𝑅1𝑦 ) ) → ( 𝑦 ∈ On ∧ 𝑥 ∈ ( 𝑅1𝑦 ) ) ) )
14 13 reximdv2 ( Lim 𝐵 → ( ∃ 𝑦𝐵 𝑥 ∈ ( 𝑅1𝑦 ) → ∃ 𝑦 ∈ On 𝑥 ∈ ( 𝑅1𝑦 ) ) )
15 8 14 biimtrid ( Lim 𝐵 → ( 𝑥 ( 𝑅1𝐵 ) → ∃ 𝑦 ∈ On 𝑥 ∈ ( 𝑅1𝑦 ) ) )
16 15 ralimdv ( Lim 𝐵 → ( ∀ 𝑥𝑎 𝑥 ( 𝑅1𝐵 ) → ∀ 𝑥𝑎𝑦 ∈ On 𝑥 ∈ ( 𝑅1𝑦 ) ) )
17 vex 𝑎 ∈ V
18 17 tz9.12 ( ∀ 𝑥𝑎𝑦 ∈ On 𝑥 ∈ ( 𝑅1𝑦 ) → ∃ 𝑦 ∈ On 𝑎 ∈ ( 𝑅1𝑦 ) )
19 eluniima ( Fun 𝑅1 → ( 𝑎 ( 𝑅1 “ On ) ↔ ∃ 𝑦 ∈ On 𝑎 ∈ ( 𝑅1𝑦 ) ) )
20 6 19 ax-mp ( 𝑎 ( 𝑅1 “ On ) ↔ ∃ 𝑦 ∈ On 𝑎 ∈ ( 𝑅1𝑦 ) )
21 18 20 sylibr ( ∀ 𝑥𝑎𝑦 ∈ On 𝑥 ∈ ( 𝑅1𝑦 ) → 𝑎 ( 𝑅1 “ On ) )
22 16 21 syl6 ( Lim 𝐵 → ( ∀ 𝑥𝑎 𝑥 ( 𝑅1𝐵 ) → 𝑎 ( 𝑅1 “ On ) ) )
23 4 22 vtoclg ( 𝐴 ∈ Fin → ( Lim 𝐵 → ( ∀ 𝑥𝐴 𝑥 ( 𝑅1𝐵 ) → 𝐴 ( 𝑅1 “ On ) ) ) )
24 23 impcomd ( 𝐴 ∈ Fin → ( ( ∀ 𝑥𝐴 𝑥 ( 𝑅1𝐵 ) ∧ Lim 𝐵 ) → 𝐴 ( 𝑅1 “ On ) ) )
25 24 3impib ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥𝐴 𝑥 ( 𝑅1𝐵 ) ∧ Lim 𝐵 ) → 𝐴 ( 𝑅1 “ On ) )
26 simp3 ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥𝐴 𝑥 ( 𝑅1𝐵 ) ∧ Lim 𝐵 ) → Lim 𝐵 )
27 simp1 ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥𝐴 𝑥 ( 𝑅1𝐵 ) ∧ Lim 𝐵 ) → 𝐴 ∈ Fin )
28 eluniima ( Fun 𝑅1 → ( 𝑥 ( 𝑅1𝐵 ) ↔ ∃ 𝑧𝐵 𝑥 ∈ ( 𝑅1𝑧 ) ) )
29 6 28 ax-mp ( 𝑥 ( 𝑅1𝐵 ) ↔ ∃ 𝑧𝐵 𝑥 ∈ ( 𝑅1𝑧 ) )
30 df-rex ( ∃ 𝑧𝐵 𝑥 ∈ ( 𝑅1𝑧 ) ↔ ∃ 𝑧 ( 𝑧𝐵𝑥 ∈ ( 𝑅1𝑧 ) ) )
31 rankr1ai ( 𝑥 ∈ ( 𝑅1𝑧 ) → ( rank ‘ 𝑥 ) ∈ 𝑧 )
32 ordtr1 ( Ord 𝐵 → ( ( ( rank ‘ 𝑥 ) ∈ 𝑧𝑧𝐵 ) → ( rank ‘ 𝑥 ) ∈ 𝐵 ) )
33 31 32 sylani ( Ord 𝐵 → ( ( 𝑥 ∈ ( 𝑅1𝑧 ) ∧ 𝑧𝐵 ) → ( rank ‘ 𝑥 ) ∈ 𝐵 ) )
34 33 ancomsd ( Ord 𝐵 → ( ( 𝑧𝐵𝑥 ∈ ( 𝑅1𝑧 ) ) → ( rank ‘ 𝑥 ) ∈ 𝐵 ) )
35 34 exlimdv ( Ord 𝐵 → ( ∃ 𝑧 ( 𝑧𝐵𝑥 ∈ ( 𝑅1𝑧 ) ) → ( rank ‘ 𝑥 ) ∈ 𝐵 ) )
36 30 35 biimtrid ( Ord 𝐵 → ( ∃ 𝑧𝐵 𝑥 ∈ ( 𝑅1𝑧 ) → ( rank ‘ 𝑥 ) ∈ 𝐵 ) )
37 29 36 biimtrid ( Ord 𝐵 → ( 𝑥 ( 𝑅1𝐵 ) → ( rank ‘ 𝑥 ) ∈ 𝐵 ) )
38 37 ralimdv ( Ord 𝐵 → ( ∀ 𝑥𝐴 𝑥 ( 𝑅1𝐵 ) → ∀ 𝑥𝐴 ( rank ‘ 𝑥 ) ∈ 𝐵 ) )
39 9 38 syl ( Lim 𝐵 → ( ∀ 𝑥𝐴 𝑥 ( 𝑅1𝐵 ) → ∀ 𝑥𝐴 ( rank ‘ 𝑥 ) ∈ 𝐵 ) )
40 39 impcom ( ( ∀ 𝑥𝐴 𝑥 ( 𝑅1𝐵 ) ∧ Lim 𝐵 ) → ∀ 𝑥𝐴 ( rank ‘ 𝑥 ) ∈ 𝐵 )
41 40 3adant1 ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥𝐴 𝑥 ( 𝑅1𝐵 ) ∧ Lim 𝐵 ) → ∀ 𝑥𝐴 ( rank ‘ 𝑥 ) ∈ 𝐵 )
42 rankfilimbi ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ( 𝑅1 “ On ) ) ∧ ( ∀ 𝑥𝐴 ( rank ‘ 𝑥 ) ∈ 𝐵 ∧ Lim 𝐵 ) ) → ( rank ‘ 𝐴 ) ∈ 𝐵 )
43 27 25 41 26 42 syl22anc ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥𝐴 𝑥 ( 𝑅1𝐵 ) ∧ Lim 𝐵 ) → ( rank ‘ 𝐴 ) ∈ 𝐵 )
44 fveq2 ( 𝑤 = suc ( rank ‘ 𝐴 ) → ( 𝑅1𝑤 ) = ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) )
45 44 eleq2d ( 𝑤 = suc ( rank ‘ 𝐴 ) → ( 𝐴 ∈ ( 𝑅1𝑤 ) ↔ 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) )
46 limsuc ( Lim 𝐵 → ( ( rank ‘ 𝐴 ) ∈ 𝐵 ↔ suc ( rank ‘ 𝐴 ) ∈ 𝐵 ) )
47 46 biimpa ( ( Lim 𝐵 ∧ ( rank ‘ 𝐴 ) ∈ 𝐵 ) → suc ( rank ‘ 𝐴 ) ∈ 𝐵 )
48 47 3adant1 ( ( 𝐴 ( 𝑅1 “ On ) ∧ Lim 𝐵 ∧ ( rank ‘ 𝐴 ) ∈ 𝐵 ) → suc ( rank ‘ 𝐴 ) ∈ 𝐵 )
49 rankidb ( 𝐴 ( 𝑅1 “ On ) → 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) )
50 49 3ad2ant1 ( ( 𝐴 ( 𝑅1 “ On ) ∧ Lim 𝐵 ∧ ( rank ‘ 𝐴 ) ∈ 𝐵 ) → 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) )
51 45 48 50 rspcedvdw ( ( 𝐴 ( 𝑅1 “ On ) ∧ Lim 𝐵 ∧ ( rank ‘ 𝐴 ) ∈ 𝐵 ) → ∃ 𝑤𝐵 𝐴 ∈ ( 𝑅1𝑤 ) )
52 eluniima ( Fun 𝑅1 → ( 𝐴 ( 𝑅1𝐵 ) ↔ ∃ 𝑤𝐵 𝐴 ∈ ( 𝑅1𝑤 ) ) )
53 6 52 ax-mp ( 𝐴 ( 𝑅1𝐵 ) ↔ ∃ 𝑤𝐵 𝐴 ∈ ( 𝑅1𝑤 ) )
54 51 53 sylibr ( ( 𝐴 ( 𝑅1 “ On ) ∧ Lim 𝐵 ∧ ( rank ‘ 𝐴 ) ∈ 𝐵 ) → 𝐴 ( 𝑅1𝐵 ) )
55 25 26 43 54 syl3anc ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥𝐴 𝑥 ( 𝑅1𝐵 ) ∧ Lim 𝐵 ) → 𝐴 ( 𝑅1𝐵 ) )