| Step |
Hyp |
Ref |
Expression |
| 1 |
|
raleq |
⊢ ( 𝑎 = 𝐴 → ( ∀ 𝑥 ∈ 𝑎 𝑥 ∈ ∪ ( 𝑅1 “ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ∪ ( 𝑅1 “ 𝐵 ) ) ) |
| 2 |
|
eleq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 ∈ ∪ ( 𝑅1 “ On ) ↔ 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) ) |
| 3 |
1 2
|
imbi12d |
⊢ ( 𝑎 = 𝐴 → ( ( ∀ 𝑥 ∈ 𝑎 𝑥 ∈ ∪ ( 𝑅1 “ 𝐵 ) → 𝑎 ∈ ∪ ( 𝑅1 “ On ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ∪ ( 𝑅1 “ 𝐵 ) → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) ) ) |
| 4 |
3
|
imbi2d |
⊢ ( 𝑎 = 𝐴 → ( ( Lim 𝐵 → ( ∀ 𝑥 ∈ 𝑎 𝑥 ∈ ∪ ( 𝑅1 “ 𝐵 ) → 𝑎 ∈ ∪ ( 𝑅1 “ On ) ) ) ↔ ( Lim 𝐵 → ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ∪ ( 𝑅1 “ 𝐵 ) → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) ) ) ) |
| 5 |
|
r1funlim |
⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) |
| 6 |
5
|
simpli |
⊢ Fun 𝑅1 |
| 7 |
|
eluniima |
⊢ ( Fun 𝑅1 → ( 𝑥 ∈ ∪ ( 𝑅1 “ 𝐵 ) ↔ ∃ 𝑦 ∈ 𝐵 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 8 |
6 7
|
ax-mp |
⊢ ( 𝑥 ∈ ∪ ( 𝑅1 “ 𝐵 ) ↔ ∃ 𝑦 ∈ 𝐵 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) |
| 9 |
|
limord |
⊢ ( Lim 𝐵 → Ord 𝐵 ) |
| 10 |
|
ordsson |
⊢ ( Ord 𝐵 → 𝐵 ⊆ On ) |
| 11 |
9 10
|
syl |
⊢ ( Lim 𝐵 → 𝐵 ⊆ On ) |
| 12 |
11
|
sseld |
⊢ ( Lim 𝐵 → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ On ) ) |
| 13 |
12
|
anim1d |
⊢ ( Lim 𝐵 → ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) → ( 𝑦 ∈ On ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) ) ) |
| 14 |
13
|
reximdv2 |
⊢ ( Lim 𝐵 → ( ∃ 𝑦 ∈ 𝐵 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) → ∃ 𝑦 ∈ On 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 15 |
8 14
|
biimtrid |
⊢ ( Lim 𝐵 → ( 𝑥 ∈ ∪ ( 𝑅1 “ 𝐵 ) → ∃ 𝑦 ∈ On 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 16 |
15
|
ralimdv |
⊢ ( Lim 𝐵 → ( ∀ 𝑥 ∈ 𝑎 𝑥 ∈ ∪ ( 𝑅1 “ 𝐵 ) → ∀ 𝑥 ∈ 𝑎 ∃ 𝑦 ∈ On 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 17 |
|
vex |
⊢ 𝑎 ∈ V |
| 18 |
17
|
tz9.12 |
⊢ ( ∀ 𝑥 ∈ 𝑎 ∃ 𝑦 ∈ On 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) → ∃ 𝑦 ∈ On 𝑎 ∈ ( 𝑅1 ‘ 𝑦 ) ) |
| 19 |
|
eluniima |
⊢ ( Fun 𝑅1 → ( 𝑎 ∈ ∪ ( 𝑅1 “ On ) ↔ ∃ 𝑦 ∈ On 𝑎 ∈ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 20 |
6 19
|
ax-mp |
⊢ ( 𝑎 ∈ ∪ ( 𝑅1 “ On ) ↔ ∃ 𝑦 ∈ On 𝑎 ∈ ( 𝑅1 ‘ 𝑦 ) ) |
| 21 |
18 20
|
sylibr |
⊢ ( ∀ 𝑥 ∈ 𝑎 ∃ 𝑦 ∈ On 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) → 𝑎 ∈ ∪ ( 𝑅1 “ On ) ) |
| 22 |
16 21
|
syl6 |
⊢ ( Lim 𝐵 → ( ∀ 𝑥 ∈ 𝑎 𝑥 ∈ ∪ ( 𝑅1 “ 𝐵 ) → 𝑎 ∈ ∪ ( 𝑅1 “ On ) ) ) |
| 23 |
4 22
|
vtoclg |
⊢ ( 𝐴 ∈ Fin → ( Lim 𝐵 → ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ∪ ( 𝑅1 “ 𝐵 ) → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) ) ) |
| 24 |
23
|
impcomd |
⊢ ( 𝐴 ∈ Fin → ( ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ∪ ( 𝑅1 “ 𝐵 ) ∧ Lim 𝐵 ) → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) ) |
| 25 |
24
|
3impib |
⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ∪ ( 𝑅1 “ 𝐵 ) ∧ Lim 𝐵 ) → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
| 26 |
|
simp3 |
⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ∪ ( 𝑅1 “ 𝐵 ) ∧ Lim 𝐵 ) → Lim 𝐵 ) |
| 27 |
|
simp1 |
⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ∪ ( 𝑅1 “ 𝐵 ) ∧ Lim 𝐵 ) → 𝐴 ∈ Fin ) |
| 28 |
|
eluniima |
⊢ ( Fun 𝑅1 → ( 𝑥 ∈ ∪ ( 𝑅1 “ 𝐵 ) ↔ ∃ 𝑧 ∈ 𝐵 𝑥 ∈ ( 𝑅1 ‘ 𝑧 ) ) ) |
| 29 |
6 28
|
ax-mp |
⊢ ( 𝑥 ∈ ∪ ( 𝑅1 “ 𝐵 ) ↔ ∃ 𝑧 ∈ 𝐵 𝑥 ∈ ( 𝑅1 ‘ 𝑧 ) ) |
| 30 |
|
df-rex |
⊢ ( ∃ 𝑧 ∈ 𝐵 𝑥 ∈ ( 𝑅1 ‘ 𝑧 ) ↔ ∃ 𝑧 ( 𝑧 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝑧 ) ) ) |
| 31 |
|
rankr1ai |
⊢ ( 𝑥 ∈ ( 𝑅1 ‘ 𝑧 ) → ( rank ‘ 𝑥 ) ∈ 𝑧 ) |
| 32 |
|
ordtr1 |
⊢ ( Ord 𝐵 → ( ( ( rank ‘ 𝑥 ) ∈ 𝑧 ∧ 𝑧 ∈ 𝐵 ) → ( rank ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 33 |
31 32
|
sylani |
⊢ ( Ord 𝐵 → ( ( 𝑥 ∈ ( 𝑅1 ‘ 𝑧 ) ∧ 𝑧 ∈ 𝐵 ) → ( rank ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 34 |
33
|
ancomsd |
⊢ ( Ord 𝐵 → ( ( 𝑧 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝑧 ) ) → ( rank ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 35 |
34
|
exlimdv |
⊢ ( Ord 𝐵 → ( ∃ 𝑧 ( 𝑧 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝑅1 ‘ 𝑧 ) ) → ( rank ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 36 |
30 35
|
biimtrid |
⊢ ( Ord 𝐵 → ( ∃ 𝑧 ∈ 𝐵 𝑥 ∈ ( 𝑅1 ‘ 𝑧 ) → ( rank ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 37 |
29 36
|
biimtrid |
⊢ ( Ord 𝐵 → ( 𝑥 ∈ ∪ ( 𝑅1 “ 𝐵 ) → ( rank ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 38 |
37
|
ralimdv |
⊢ ( Ord 𝐵 → ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ∪ ( 𝑅1 “ 𝐵 ) → ∀ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 39 |
9 38
|
syl |
⊢ ( Lim 𝐵 → ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ∪ ( 𝑅1 “ 𝐵 ) → ∀ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 40 |
39
|
impcom |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ∪ ( 𝑅1 “ 𝐵 ) ∧ Lim 𝐵 ) → ∀ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ∈ 𝐵 ) |
| 41 |
40
|
3adant1 |
⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ∪ ( 𝑅1 “ 𝐵 ) ∧ Lim 𝐵 ) → ∀ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ∈ 𝐵 ) |
| 42 |
|
rankfilimbi |
⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) ∧ ( ∀ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ∈ 𝐵 ∧ Lim 𝐵 ) ) → ( rank ‘ 𝐴 ) ∈ 𝐵 ) |
| 43 |
27 25 41 26 42
|
syl22anc |
⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ∪ ( 𝑅1 “ 𝐵 ) ∧ Lim 𝐵 ) → ( rank ‘ 𝐴 ) ∈ 𝐵 ) |
| 44 |
|
fveq2 |
⊢ ( 𝑤 = suc ( rank ‘ 𝐴 ) → ( 𝑅1 ‘ 𝑤 ) = ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) |
| 45 |
44
|
eleq2d |
⊢ ( 𝑤 = suc ( rank ‘ 𝐴 ) → ( 𝐴 ∈ ( 𝑅1 ‘ 𝑤 ) ↔ 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) ) |
| 46 |
|
limsuc |
⊢ ( Lim 𝐵 → ( ( rank ‘ 𝐴 ) ∈ 𝐵 ↔ suc ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) |
| 47 |
46
|
biimpa |
⊢ ( ( Lim 𝐵 ∧ ( rank ‘ 𝐴 ) ∈ 𝐵 ) → suc ( rank ‘ 𝐴 ) ∈ 𝐵 ) |
| 48 |
47
|
3adant1 |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ Lim 𝐵 ∧ ( rank ‘ 𝐴 ) ∈ 𝐵 ) → suc ( rank ‘ 𝐴 ) ∈ 𝐵 ) |
| 49 |
|
rankidb |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) |
| 50 |
49
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ Lim 𝐵 ∧ ( rank ‘ 𝐴 ) ∈ 𝐵 ) → 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) |
| 51 |
45 48 50
|
rspcedvdw |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ Lim 𝐵 ∧ ( rank ‘ 𝐴 ) ∈ 𝐵 ) → ∃ 𝑤 ∈ 𝐵 𝐴 ∈ ( 𝑅1 ‘ 𝑤 ) ) |
| 52 |
|
eluniima |
⊢ ( Fun 𝑅1 → ( 𝐴 ∈ ∪ ( 𝑅1 “ 𝐵 ) ↔ ∃ 𝑤 ∈ 𝐵 𝐴 ∈ ( 𝑅1 ‘ 𝑤 ) ) ) |
| 53 |
6 52
|
ax-mp |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ 𝐵 ) ↔ ∃ 𝑤 ∈ 𝐵 𝐴 ∈ ( 𝑅1 ‘ 𝑤 ) ) |
| 54 |
51 53
|
sylibr |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ Lim 𝐵 ∧ ( rank ‘ 𝐴 ) ∈ 𝐵 ) → 𝐴 ∈ ∪ ( 𝑅1 “ 𝐵 ) ) |
| 55 |
25 26 43 54
|
syl3anc |
⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ∪ ( 𝑅1 “ 𝐵 ) ∧ Lim 𝐵 ) → 𝐴 ∈ ∪ ( 𝑅1 “ 𝐵 ) ) |