| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r1elcl |
⊢ ( ( 𝐴 ∈ ( 𝑅1 ‘ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) |
| 2 |
1
|
expcom |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝐴 ∈ ( 𝑅1 ‘ 𝑦 ) → 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 3 |
2
|
reximdv |
⊢ ( 𝑥 ∈ 𝐴 → ( ∃ 𝑦 ∈ 𝐵 𝐴 ∈ ( 𝑅1 ‘ 𝑦 ) → ∃ 𝑦 ∈ 𝐵 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 4 |
|
r1funlim |
⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) |
| 5 |
4
|
simpli |
⊢ Fun 𝑅1 |
| 6 |
|
eluniima |
⊢ ( Fun 𝑅1 → ( 𝐴 ∈ ∪ ( 𝑅1 “ 𝐵 ) ↔ ∃ 𝑦 ∈ 𝐵 𝐴 ∈ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 7 |
5 6
|
ax-mp |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ 𝐵 ) ↔ ∃ 𝑦 ∈ 𝐵 𝐴 ∈ ( 𝑅1 ‘ 𝑦 ) ) |
| 8 |
|
eluniima |
⊢ ( Fun 𝑅1 → ( 𝑥 ∈ ∪ ( 𝑅1 “ 𝐵 ) ↔ ∃ 𝑦 ∈ 𝐵 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) ) |
| 9 |
5 8
|
ax-mp |
⊢ ( 𝑥 ∈ ∪ ( 𝑅1 “ 𝐵 ) ↔ ∃ 𝑦 ∈ 𝐵 𝑥 ∈ ( 𝑅1 ‘ 𝑦 ) ) |
| 10 |
3 7 9
|
3imtr4g |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝐴 ∈ ∪ ( 𝑅1 “ 𝐵 ) → 𝑥 ∈ ∪ ( 𝑅1 “ 𝐵 ) ) ) |
| 11 |
10
|
com12 |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ 𝐵 ) → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ ( 𝑅1 “ 𝐵 ) ) ) |
| 12 |
11
|
ralrimiv |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ 𝐵 ) → ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ∪ ( 𝑅1 “ 𝐵 ) ) |
| 13 |
|
r1filimi |
⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ∪ ( 𝑅1 “ 𝐵 ) ∧ Lim 𝐵 ) → 𝐴 ∈ ∪ ( 𝑅1 “ 𝐵 ) ) |
| 14 |
13
|
3com23 |
⊢ ( ( 𝐴 ∈ Fin ∧ Lim 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ∪ ( 𝑅1 “ 𝐵 ) ) → 𝐴 ∈ ∪ ( 𝑅1 “ 𝐵 ) ) |
| 15 |
14
|
3expia |
⊢ ( ( 𝐴 ∈ Fin ∧ Lim 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ∪ ( 𝑅1 “ 𝐵 ) → 𝐴 ∈ ∪ ( 𝑅1 “ 𝐵 ) ) ) |
| 16 |
12 15
|
impbid2 |
⊢ ( ( 𝐴 ∈ Fin ∧ Lim 𝐵 ) → ( 𝐴 ∈ ∪ ( 𝑅1 “ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ∪ ( 𝑅1 “ 𝐵 ) ) ) |