Metamath Proof Explorer


Theorem r1filim

Description: A finite set appears in the cumulative hierarchy prior to a limit ordinal iff all of its elements appear in the cumulative hierarchy prior to that limit ordinal. (Contributed by BTernaryTau, 22-Jan-2026)

Ref Expression
Assertion r1filim ( ( 𝐴 ∈ Fin ∧ Lim 𝐵 ) → ( 𝐴 ( 𝑅1𝐵 ) ↔ ∀ 𝑥𝐴 𝑥 ( 𝑅1𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 r1elcl ( ( 𝐴 ∈ ( 𝑅1𝑦 ) ∧ 𝑥𝐴 ) → 𝑥 ∈ ( 𝑅1𝑦 ) )
2 1 expcom ( 𝑥𝐴 → ( 𝐴 ∈ ( 𝑅1𝑦 ) → 𝑥 ∈ ( 𝑅1𝑦 ) ) )
3 2 reximdv ( 𝑥𝐴 → ( ∃ 𝑦𝐵 𝐴 ∈ ( 𝑅1𝑦 ) → ∃ 𝑦𝐵 𝑥 ∈ ( 𝑅1𝑦 ) ) )
4 r1funlim ( Fun 𝑅1 ∧ Lim dom 𝑅1 )
5 4 simpli Fun 𝑅1
6 eluniima ( Fun 𝑅1 → ( 𝐴 ( 𝑅1𝐵 ) ↔ ∃ 𝑦𝐵 𝐴 ∈ ( 𝑅1𝑦 ) ) )
7 5 6 ax-mp ( 𝐴 ( 𝑅1𝐵 ) ↔ ∃ 𝑦𝐵 𝐴 ∈ ( 𝑅1𝑦 ) )
8 eluniima ( Fun 𝑅1 → ( 𝑥 ( 𝑅1𝐵 ) ↔ ∃ 𝑦𝐵 𝑥 ∈ ( 𝑅1𝑦 ) ) )
9 5 8 ax-mp ( 𝑥 ( 𝑅1𝐵 ) ↔ ∃ 𝑦𝐵 𝑥 ∈ ( 𝑅1𝑦 ) )
10 3 7 9 3imtr4g ( 𝑥𝐴 → ( 𝐴 ( 𝑅1𝐵 ) → 𝑥 ( 𝑅1𝐵 ) ) )
11 10 com12 ( 𝐴 ( 𝑅1𝐵 ) → ( 𝑥𝐴𝑥 ( 𝑅1𝐵 ) ) )
12 11 ralrimiv ( 𝐴 ( 𝑅1𝐵 ) → ∀ 𝑥𝐴 𝑥 ( 𝑅1𝐵 ) )
13 r1filimi ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥𝐴 𝑥 ( 𝑅1𝐵 ) ∧ Lim 𝐵 ) → 𝐴 ( 𝑅1𝐵 ) )
14 13 3com23 ( ( 𝐴 ∈ Fin ∧ Lim 𝐵 ∧ ∀ 𝑥𝐴 𝑥 ( 𝑅1𝐵 ) ) → 𝐴 ( 𝑅1𝐵 ) )
15 14 3expia ( ( 𝐴 ∈ Fin ∧ Lim 𝐵 ) → ( ∀ 𝑥𝐴 𝑥 ( 𝑅1𝐵 ) → 𝐴 ( 𝑅1𝐵 ) ) )
16 12 15 impbid2 ( ( 𝐴 ∈ Fin ∧ Lim 𝐵 ) → ( 𝐴 ( 𝑅1𝐵 ) ↔ ∀ 𝑥𝐴 𝑥 ( 𝑅1𝐵 ) ) )